

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of RC Columns Subjected to Lateral Loads and Strengthened Using NSM Basalt and Glass FRP Bars

A Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Civil Engineering
Structural Engineering Department
by

Eng. Mohamed Mostafa Abdel-Hamid

Bachelor of Science in Civil Engineering
Structural Engineering Department
Faculty of Engineering, Ain Shams University, 2016

Supervised By

Prof. Dr. Yehia Abdel-Zaher

Professor of Properties and Testing of Materials, Structural Department,
Faculty of Engineering
Ain Shams University

Dr. Ibrahim Abdel-Latif

Associate Professor, Structural Engineering Department, Faculty of Engineering
Ain Shams University

Dr. Fareed Mahmoud Elgabbas

Assistant Professor, Structural Engineering Department, Faculty of
Engineering
Ain Shams University
Cairo - (2022)

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of RC Columns Subjected to Lateral Loads and Strengthened Using NSM Basalt and Glass FRP Bars

by

Eng. Mohamed Mostafa Abdel-Hamid Ramadan

Bachelor of Science in Civil Engineering Structural Engineering Department Faculty of Engineering, Ain Shams University, 2016

Supervision Committee

Name and Affiliation	Signature
Prof. Dr. Yehia Abdel-Zaher	
Professor of Properties and Testing of Materials,	
Structural Department, Faculty of Engineering,	•••••••
Ain Shams University	
Dr. Ibrahim Abdel-Latif	
Associate Professor, Structural Engineering Department,	
Faculty of Engineering	• • • • • • • • • • • • • • • • • • • •
Ain Shams University	
Dr. Fareed Mahmoud Elgabbas	
Assistant Professor, Structural Engineering Department,	
Faculty of Engineering	••••••
Ain Shams University	

Date: 24 January 2022

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of RC Columns Subjected to Lateral Loads and Strengthened Using NSM Basalt and Glass FRP Bars

by

Eng. Mohamed Mostafa Abdel-Hamid Ramadan

Bachelor of Science in Civil Engineering Structural Engineering Department Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Osama Abdel-Ghafour Hodhod	
Professor of Properties and Testing of Materials, Structural Department, Faculty of Engineering, Cairo University	
Prof. Dr. Hany Mohamed Elshafie	
Professor of Properties and Testing of Materials, Structural Department, Faculty of Engineering, Ain Shams University	
Prof. Dr. Yehia Abdel-Zaher	
Professor of Properties and Testing of Materials, Structural Department, Faculty of Engineering, Ain Shams University	

Date: 24 January 2022

Statement

This thesis is submitted as parti	ial fulfillment of Master of Science in Civil	1
Engineering Engineering, Facu	alty of Engineering, Ain shams University.	

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mohamed Mostafa Abdel-Hamid Ramadan

Signature	
Da	ate:

Abstract

The strengthening of existing concrete structures using FRP composites had spread worldwide due to the advantages offered by these composites in comparison with other traditional materials. Basalt fiber reinforced polymer (BFRP) is a newly developed material in this field that is expected to compete strongly among other types of FRP composites. This research aimed at studying the flexural behavior of RC columns strengthened with different techniques using BFRP bars to assess their efficiency for strengthening RC columns in order to be introduced as an alternative to other types of FRP bars. Moreover, this study investigates a new type of strengthening technique named the "hybrid" technique, which is expected to offer lots of advantages owing to combining two well-known techniques, FRP jacketing and NSM techniques.

Basalt fibers are inorganic fibers, similar to glass fibers, that are created by melting basalt rocks. The manufacturing process of basalt fibers consumes less energy and does not need any other additives in the single production process, consequently, leading to a low cost of fibers. The initial studies showed that the basalt fibers have high tensile strength and modulus, better chemical resistance, extended operating temperature range, and are considered to be more eco-friendly when compared to E-glass. Furthermore, basalt-FRP has been proven to have advantages in attaining the goal of improving the safety and reliability of structural systems when compared to traditional glass FRP composites. These advantages make basalt fibers a promising alternative to glass fibers as a reinforcing and strengthening material.

This study consists of two phases, phase I was aimed at studying the mechanical properties of the basalt FRP bars. In this phase, several tests were conducted on the FRP bars to investigate their mechanical properties to be used later in phase II. Phase II was aimed at investigating the structural performance of RC columns strengthened with different techniques using BFRP bars. The variables considered in this phase are the strengthening effect (unstrengthened and strengthened), the type of the FRP bars (BFRP and GFRP), the strengthening technique (NSM and hybrid), and the diameter of the used FRP bars (10 mm and 12 mm). The test results are discussed and analyzed in terms of cracking, yielding, and ultimate behavior, in addition to the crack pattern and failure modes.

The test results showed the efficiency of strengthening RC columns with different techniques using BFRP bars in enhancing the overall flexural behavior. Moreover, the test results demonstrated the significance of using BFRP bars compared to the more traditional GFRP bars for strengthening RC columns. Using the NSM technique in strengthening RC columns can increase improve the ultimate load capacity and the ductility of the columns by 30% and 169%, respectively. Using the hybrid technique can significantly enhance the ultimate load capacity and the ductility of the columns by 95% and 241%, respectively.

Keywords: Flexural Strengthening of RC Columns; NSM; Basalt Fiber Reinforced Polymer (BFRP); Glass Fiber Reinforced Polymer (GFRP); FRP Jacket.

ACKNOWLEDGEMENT

First of all, I want to express my profound gratitude to ALLAH, for giving me the patience and the effort to complete this work.

It was a great honor to work under the supervision of Prof. Yehia Abdel-Zaher, Professor of Properties and Testing of Materials, Structural Engineering Department, Faculty of Engineering, Ain Shams University.

Special thanks to my supervisor; Dr. Ibrahim Abdel-Latif for his help and kind cooperation. I am really grateful for having the opportunity to work under his supervision.

I would like to express my deepest appreciation to Dr. Fareed Elgabbas for his valuable assistance, guidance, patience, and endless support throughout this research. I genuinely appreciate his patience and continuous support. I would like to thank him for his concentrated effort to finalize our work in a tight time frame and also to thank him for the technical knowledge he gave to me.

The experimental work was carried out at the Properties and Testing of Materials Laboratory of the Structural Engineering Department of Ain-Shams University. The help of the laboratory staff in developing this work is greatly appreciated.

I will always be indebted to my parents and my sister for their loving support and encouragement and for making me believe in my dreams and for supporting me to achieve them.

Researcher Data

Name : Mohamed Mostafa Abdel-Hamid Ramadan

Date of birth : 15 September 1993

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Ain Shams University

Date of issued degree : July 2016

Current job : Teaching Assistant, Structural Department,

Faculty of Engineering, Ain Shams University

TABLE OF CONTENTS

Abstra	iii
ACKN	OWLEDGEMENTv
TABLE	E OF CONTENTS vii
LIST C	F TABLESxiii
LIST C	F FIGURES xiv
СНАР	PTER (1): Introduction
1.1	Overview
1.2	Problem Statement
1.3	Research Objectives
1.4	Structure of the Thesis
СНАР	PTER (2): Literature Review
2.1	Introduction
2.2	Historical Development of FRP as Strengthening material 6
2.3	FRP Systems
2.3.1	Advantages of FRP Composites
2.3.2	Disadvantages of FRP
2.4	Basalt FRP
2.4.1	Basalt Rocks Background
2.4.2	Manufacturing Process of BFRP
2.4.3	BFRP Chemical Properties
2.4.4	BFRP Mechanical Properties
2.4.5	BFRP Thermomechanical Properties
2.4.6	BFRP Reinforcing RC Columns

2.5	Strengthening of RC Elements using FRP	23
2.5.1	Flexural Strengthening Techniques of RC columns using F	RΡ
System	1S	24
2.5.1.1	Externally Bonded Technique	25
2.5.1.2	Near-Surface-Mounted Technique	26
2.6	Needed Research	28
CHAP	TER (3): Objectives & Research Plan	30
3.1	Introduction	30
3.2	Research Plan	30
3.2.1	Objectives	30
3.2.2	Experimental Program	31
3.2.2.1	Phase (I)	32
3.2.2.2	Phase II	33
CHAP	TER (4): Materials Characterization	37
4.1	Introduction	37
4.2	Physical Properties	37
4.2.1	Cross-sectional Properties of FRP bars	37
4.2.2	Relative Density of BFRP Bars	40
4.2.3	Fiber Content of FRP Bars	42
4.3	Mechanical Properties	45
4.3.1	Tensile Properties of FRP Bars	45
4.3.2	Transverse Shear Strength of FRP Bars	59
4.3.3	Interlaminar shear strength of FRP bars	62
4.4	Mechanical Properties of the GFRP sheets	65

	TER (5): Construction, Strengthening, and Testing of RC Colur	
5.1	Introduction	
5.2	Columns Preparations and Casting	
5.2.1	General Description of Test Columns	67
5.2.2	Wooden Formwork	68
5.2.3	Casting of Columns	69
5.2.4	Testing of Poured Concrete	71
5.3	Strengthening of RC Columns	71
5.3.1	Strengthening using NSM Technique	72
5.3.2	Strengthening using Hybrid Technique	73
5.4	Instrumentation and Test Setup	. 75
CHAP	TER (6): Test Results, Discussion, and Analysis of Colum	ns'
Respon	nse	81
6.1	Introduction	81
6.2	Test Results of Phase (II)	81
6.2.1	Test Results for Unstrengthened (Control) column "C"	81
6.2.1.1	General	81
6.2.1.2	Lateral load versus deformation Response	82
6.2.1.3	Crack Pattern and Failure Mode	82
6.2.1.4	Concrete Compressive Strain	83
6.2.2	Test Results for Column "NSM-G10-0"	84
6.2.2.1	General	84
6.2.2.2	Lateral load versus Deformation Response	84

6.2.2.3	Crack Pattern and Failure Mode	86
6.2.2.4	FRP Tensile Strain.	87
6.2.2.5	Concrete Compressive Strain	87
6.2.3	Test Results for Column "NSM-B10-0"	88
6.2.3.1	General	88
6.2.3.2	Lateral load versus Deformation Response	88
6.2.3.3	Crack Pattern and Failure Mode	89
6.2.3.4	FRP Tensile Strain.	90
6.2.3.5	Concrete Compressive Strain	91
6.2.4	Test Results for Column "NSM-B12-0"	92
6.2.4.1	General	92
6.2.4.2	Lateral load versus deformation Response	92
6.2.4.3	Crack Pattern and Failure Mode	93
6.2.4.4	FRP Tensile Strain	94
6.2.4.5	Concrete Compressive Strain	95
6.2.5	Test Results for Column "HYB-G10-2"	96
6.2.5.1	General	96
6.2.5.2	Lateral load versus deformation Response	96
6.2.5.3	Crack Pattern and Failure Mode	97
6.2.5.4	FRP Tensile Strain	98
6.2.5.5	Concrete Compressive Strain	99
6.2.6	Test Results for Column "HYB-B10-2"	00
6.2.6.1	General	00
6.2.6.2	Lateral load versus Deformation Response	01