

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University

Faculty of Engineering

Irrigation and Hydraulics Department

The Effect of Soil Layers Thickness and Characteristics on the Efficiency of Sheet Piles under Heading-Up Structures

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering
(Irrigation and Hydraulics)

By

Nourhan Khaled Ahmed Mansour Afifi

B.Sc. in Civil Engineering – Irrigation and Hydraulics Dept. - 2018Ain Shams University - Faculty of Engineering

Supervised by

Prof. Nahla Mohamed AboulAtta

Professor of Irrigation Design Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Dr. Doaa Anas El-Molla

Assistant Professor Irrigation and Hydraulics Department Faculty of Engineering Ain-Shams University

Cairo – (2022)

Ain Shams University

Faculty of Engineering

Irrigation and Hydraulics Department

EXAMINERS COMMITTEE

Name: Nourhan Khaled Ahmed Mansour

Thesis: The Effect of Soil Layers Thickness and Characteristics on the

Efficiency of Sheet Piles under Heading-Up Structures

Degree: Master of Science in Civil Engineering

Name and Affiliation Signature

Prof. Dr. Ahmed Moustafa Ahmed Moussa

Professor of Hydraulics and Deputy of Coastal Research Institute

Prof. Dr. Ghada Mahmoud Samy Ali Ezizah

Professor of Hydraulics Irrigation and Hydraulics Department Faculty of Engineering - Ain-Shams University

Prof. Dr. Nahla Mohamed AboulAtta

Professor of Irrigation Design Irrigation and Hydraulics Department Faculty of Engineering - Ain-Shams University

Date: 20/1/2022

Ain Shams University Faculty of Engineering

Irrigation and Hydraulics Department

SUPERVISOR COMMITTEE

Name: Nourhan Khaled Ahmed Mansour

Thesis: The Effect of Soil Layers Thickness and Characteristics on the

Efficiency of Sheet Piles under Heading-Up Structures

Degree: Master of Science in Civil Engineering

Name and Affiliation Prof. Dr. Nahla Mohamed AboulAtta Professor of Irrigation Design Irrigation and Hydraulics Department Faculty of Engineering - Ain-Shams University Dr. Doaa Anas El-Molla Assistant Professor Irrigation and Hydraulics Department Faculty of Engineering - Ain-Shams University

Research Date: // 2022

Postgraduate Studies

Authorization Stamp: The thesis is authorized at: / / 2022

College Board Approval University Board Approval

Researcher Data

Name Nourhan Khaled Ahmed Mansour Afifi

Date of birth 15/05/1995

Place of birth Cairo, Egypt

Last academic degree B.Sc. in Civil Engineering

Field of specialization Irrigation and Hydraulics Engineering

University issued the degree Ain Shams University

Date of issued degree 2018

Current job Water Engineer, Khatib & Alami Company

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering (Irrigation and Hydraulics), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student Name			
Nourhan Khaled Ahmed Mansour Afifi			
Signature			

Acknowledgement

At the beginning and end, thanks to Allah for everything.

First, I would like to thank my advisors, Dr. Nahla Mohamed AboulAtta and Dr. Doaa Anas El-Molla, for their patience and persistent support throughout this study. Without them, this research would not have been possible.

I would like to thank my family for their patience and persistent support throughout my life.

Abstract

Using sheet piles under the floor of a heading-up structure decreases the flow rate, uplift force, and hydraulic gradient, and increases the structure's safety. The type of soil under the structure is an important factor in the seepage analysis. In this study, a 2D numerical model is used to simulate the flow under the floor of a heading-up structure resting on two soil layers of unequal thicknesses. The floor is considered to have vertical and inclined sheet piles with different configurations. The model was first validated using experimental data from a previous research, then applied to study different scenarios for the thicknesses and hydraulic conductivities of the soil layers. Various locations and inclination angles of the sheet piles are also studied. The study highlights the effect of the soil layers thicknesses and characteristics on the efficiency of the sheet piles in reducing the flow rate, uplift force, and exit gradient. The results show that such soil properties have a great effect on the efficiency of sheet piles. It is strongly recommended to consider the effect of the soil characteristics as well as the thickness of the upper soil layer relative to the sheet pile's depth in the floor's design.

Keywords: Heading-up structures; Seepage; SEEP2D numerical model; Soil layers thickness; Soil characteristics; Vertical and inclined sheet piles.

Table of Contents

Researc	cher Data	. ii
Stateme	enti	iii
Abstrac	r 2	
Table of		
List of I	Figuresvi	S
List of s	symbols	X
•		
1.1		
1.2	Research objective	2
1.3	Research activities	2
1.4	Outline of the study	3
Chaptei	r 2	. 4
2 I	Literature Review	4
۲,۱	Theoretical background	4
۲,۲	Seepage through Porous Media	5
2.3	Summary of the previous research work	10
2.4	The innovation in the present study	19
Chapter	r 3	20
3 7	The Dimensional Analysis	20
3.1	Introduction	20
3.2	The Variables Involved in the Study	20
3.3	Dimensional Analysis Using Buckingham's Pi Theorem	21
Chapter	r 42	23
4 T	The Numerical Model	23
4.1	Introduction	23
4.2	Description of the model	23
4.3	Validation of the Numerical Model	29
4.4	The Numerical Modeling Scenarios	33
Chapter	r 53	35
5 A	Analysis of the Results and Discussion	35
5.1	Introduction	35
5.2	Analysis of the Numerical Model's Results	35

Chapter 6		50	
6	S	ummary, Conclusions, and Recommendations	50
6	5.1	Summary	50
6	5.2	Conclusions	50
6	5.3	Recommendations	51
Refer	enc	es	52
Ap	pen	dix A	1
7	The (output of the numerical model's runs	1

List of Figures

Figure 2-1: Darcy's Law for flow through inclined soil column, after (U.S. Army Corps of Engineers, 1986).	6
Figure 2-2: Homogeneity and isotropy, after (U.S. Army Corps of Engineers, 1999)	7
Figure 2-3: Concepts of flow paths through a soil column after (U.S. Army Corps of Engineers, 1986).	8
Figure 3-1: The variables involved in the study	21
Figure 4-1: The finite element mesh under the floor and around the sheet piles	24
Figure 4-2: Sample of the studied soil layers scenarios for different sheet piles configurations.	25
Figure 4-3: The upstream and downstream boundary conditions used in this study	26
Figure 4-4: Sample of SEEP2D results for double sheet piles.	27
Figure 4-5: Sample of SEEP2D results for single sheet piles.	28
Figure 4-6: Cross-section of the heading-up structure used in the model's validation	29
Figure 4-7: SEEP2D model validation scenarios.	30
Figure 4-8: Results of SEEP2d model validation for: a) seepage discharge, b) uplift force, c) exit gradient.	
Figure 4-9: The numerical modeling scenarios.	34
Figure 5-1: Sample of the numerical model's output for different cases of single sheet pile	36
Figure 5-2: Sample of the numerical model's output for different cases of double sheet piles.	37
Figure 5-3: Seepage discharge ratio (q/qo) for different sheet piles angles and configurations case of single homogeneous soil layer	
Figure 5-4: Effect of T_1/d on the seepage discharge ratio (q/q_o) for different sheet piles angle and configurations $(K_1/K_2=4)$	
Figure 5-5: Uplift force ratio (F/F _o) for different sheet piles angles and configurations - case of single homogeneous soil layer	
Figure 5-6: Effect of T_1/d on the uplift force ratio (F/F _o) for different sheet piles angles and configurations ($K_1/K_2=4$)	43
Figure 5-7: Exit gradient ratio (E/E ₀) for different sheet piles angles and configurations - cas of single homogeneous soil layer	
Figure 5-8: Effect of T_1/d on the exit gradient ratio (E/E _o) for different sheet piles angles and configurations ($K_1/K_2=4$)	
Figure 5-9: Effect of soil layers hydraulic conductivity ratio (K_1/K_2) on the seepage discharg ratio (q/q_0) for different T1/d ratios	

Figure 5-10: Effect of soil layers hydraulic conductivity ratio (K_1/K_2) on the uplift force ratio	
(F/F_0) for different T_1/d ratios	.48
-	
Figure 5-11: Effect of soil layers hydraulic conductivity ratio (K_1/K_2) on the exit gradient	
ratio (E/E ₀) for different T_1/d ratios.	.49

List of symbols

d	depth of the sheet pile	[L]
Е	exit gradient	[Dimensionless]
Eo	exit gradient in the reference case	[Dimensionless]
F	uplift force on the floor's bottom per unit width of the floor	[MT ⁻²]
Fo	uplift force on the floor's bottom in the reference case per unit width of the floor	[MT ⁻²]
g	gravitational acceleration	[LT ⁻²]
Н	difference between the water head upstream and downstream the structure	[L]
\mathbf{K}_1	hydraulic conductivity of upper soil layer	[LT ⁻¹]
\mathbf{K}_2	hydraulic conductivity of lower soil layer	[LT ⁻¹]
L	length of the floor	[L]
q	total flow rate per unit width of the floor	$[L^2T^{-1}]$
q_{o}	total flow rate in the reference case per unit width of the floor	$[L^2T^{-1}]$
\mathbb{R}^2	Coefficient of determination	[Dimensionless]
T_1	thickness of the upper layer of soil	[L]
Т	total thickness of the soil under the floor	[L]
X	location of the sheet pile measured from the beginning of the floor	[L]
θ	inclination angle of sheet pile	[Dimensionless]
ρ_{w}	density of water	[ML ⁻³]