THE ANTIDEPRESSANT EFFECT OF MORIN IN AN EXPERIMENTAL MODEL OF DEPRESSION IN RATS: IMPACT ON NEURODEGENERATION, INFLAMMATION AND APOPTOSIS

Thesis submitted for the partial fulfillment of the Master Degree in Pharmaceutical Sciences (Pharmacology & Toxicology)

By

Mennat Allah Mahmoud Mohamed Abdelrahman Hassan

B. Pharm. Sc., Ain Shams University (2016)

Quality control specialist

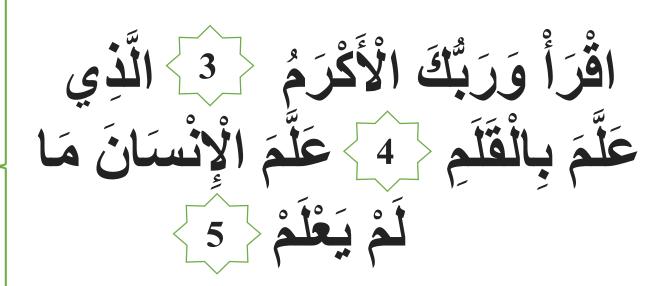
Egyptian Drug Authority, (EDA), formerly NODCAR,

Under the supervision of

Prof. Dr/ Osama Ahmed Badary

Professor and head of department of Clinical Pharmacy, Faculty of Pharmacy, The British University in Egypt.

Dr/ Reem Nabil Abou El-Naga


Associate professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams
University.

Dr/ Esther Tharwat Menze Yonan

Associate professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Faculty of Pharmacy
Ain Shams University
-2020-

قال تعالي:

صدق الله العظيم (العلق 3-5)

Dedication

This thesis is dedicated to the **soul of my father** and to my **beloved mother**. Words can never express my sincere thanks to **them** their endless love, support and encouragement to pursue this degree. They taught me how to face challenges strongly with faith and courage, they are a constant source of inspiration in my life and they always push me to achieve my goals. Without their encouragement through my life, I could not have the ability to finish this work. God bless **my mother** for me and let **my father's soul** rest in peace.

Also I dedicate this work to my **sister** and **brother** who have supported and encouraged me throughout the process. I will always appreciate all they have done.

Mennat Allah Mahmoud

Acknowledgments

First, I want to express my sincere everlasting gratitude and thanks to "Allah" who helps me and gives me the ability to accomplish this work.

It is a great pleasure to express my deepest thanks and appreciation to **Prof.**Osama Ahmed Badary, Professor and head of department of Clinical Pharmacy,
British University in Egypt, for his generous guidance, encouragement and
beneficial discussion during experimental work and revising the thesis. I am
heavily indebted to his tremendous efforts, deep experience, the valuable time, and
generous assistance during all stages of this study.

My deepest thanks, gratitude and heartfelt sincere acknowledgment to Assoc. Prof. Reem Nabil Abou El-Naga, Associate professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for supervising the experimental work steps, her beneficial advices, and continuous encouragement. All credit goes to her for participating in choosing the thesis point from the department search line. I am also grateful for her precious time, spent in revising this thesis and giving valuable comments. The supervision and support that she gave me truly helped the progression and smoothness of this work.

I owe all the sincerest appreciation and heartfelt gratitude to **Assoc. Prof. Esther Tharwat Menze**, *Associate professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University*, for her valuable advices and crucial contribution which made her a backbone of this research. All credit goes to her for sharing in choosing the thesis point from the department search line. She embraced this thesis by establishing the work techniques, providing me with the possible facilitations and stimulating my interest in this field I learnt from her determination and enthusiasm that will benefit my career in an unforgettable way.

I would like to express my deepest thanks, heartfelt appreciation to **Assoc. Prof. Amany Mohamed Gad,** Associate Professor in the department of Pharmacology at National Organization for Drug Control and Research, for actively supervising the experimental work steps and solving the daily problems her kindness, and encouragement. She embraced this thesis with her enlightening thoughts, useful comments, efforts, and valuable time that she sacrificed for me during this work, without which I would have never been able to produce such a work.

Special thanks to **Dr. Adel Bakeer**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for performing the histopathological examination and for giving me his valuable comments on them.

Lastly but not least, I would like to thank my colleagues in the National Organization for Drug Control &Research (NODCAR) for their kind co-operation and moral support.

Mennat Allah Mahmoud

Contents

Subject	 Page No.
List of Abbreviations	 I
List of Tables	 IV
List of figures	 ${f V}$
Review of literature	 1
1. Depression	 1
1.5 The Hypothesis of depression	 6
1.6 The management of depression	 14
1.7 Depression induction	 16
models	 26
2. Natural product used in	
depression	
3. Morin hydrate	 28
3.2 The pharmacokienetics of morin hydrate	 29
3.3 The pharmacodynamics of morin hydrate	 31
Aim of the work	 37
Materials and Methods	 38
Results	 90
Discussion	 118
Summary and conclusion	 126
References	 132
Graphical Abstract	 162
الملخص العربي	 Í

List of abbreviations

5-HT	Serotonin/5-hydroxytryptamine
AD	Alzheimer's disease
ADs	Antidepressant drugs
AIM	Absent in melanoma
ASC	Apoptosis-associated speck-like protein containing a
ASC	caspase recruitment domain
ATP	Adenosine triphosphate
BDNF	Brain-derived neurotrophic factor
CASP-1	Caspase1
CASP-3	Caspase3
CLR	C-type lectin receptors
CMDD	Chronic major depressive disorder
CRS	Chronic restraint stress
CSDS	Chronic social defeat stress
CUMS	Chronic unpredictable mild stress
CUSS	Chronic unpredictable severe stress
DA	Dopamine
DAMPs	Damage-associated molecular patterns
D-GaIN	D-galactosamine
DMSO	Dimethyl sulphoxide
DN	Diabetic neuropathy
DNA	Deoxyribonucleic acid
DOCA	Deoxycorticosterone acetate
DOX	Doxorubicin
DTNB	5'5'dithiobis(2-nitrobenzoic acid)
ECT	Electroconvulsive therapy
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EP	Epinephrine
FST	Forced swim test and
GM	Gentamicin
GR	Glucocorticoid receptor
GSH	reduced glutathione
H&E	Hematoxylin & Eosin
НС	Hippocampus

HC1	Hydrochloric acid
HPA	Hypothalamic–pituitary–adrenal
HPRT	Hypo-xanthine phospho-ribosyl transferase
HRP	Horseradish Peroxidase
IGF-1	Insulin growth factor 1
IL-1β	Interleukin-1β
IL-6	Interleukin-6
IPAF	ICE-protease activating factor
KET	Ketamine
LPS/CMS	Lipopolysaccharide/chronic mild stress
LPS/SAL	Lipopolysaccharide/saline
LRR	leucine- rich repeat
MAO	Monoamine oxidase
MAOIs	Monoamine Oxidase Inhibitors
MCAO	Midbrain Carotid artery occlusion rats
MDA	Malondialdehyde
MDD	Major depressive disorder
MIRI	Myocardial ischemia-reperfusion injury
MPP+	1-methyl-4-phenylpyridinium ion
MPTP	Mitochondrial permeability transition pore
MRAP-1	Multi-drug resistance associated protein-1
mRNA	Messenger ribonucleic acid
MSU	Monosodium urate
N2A	Neuroblastoma
NACHT	Nucleotide-binding oligomerization and N-terminal
NaOH	Sodium hydroxide
NDRIs	Norepinephrine Dopamine Reuptake Inhibitors
NE	Norepinephrine
NF-κB	Nuclear factor kappa B
NGF	Nerve growth factor
NLR	(NOD)-like receptors
NLRC	NLR family CARD domain-containing protein
NLRP3	NLR family, pyrin domain-containing 3
NOD	Nucleotide-binding oligomerization domain
Nrf2	Nuclear erythroid factor 2-related factor
OD	Optical density

OFT	Open field test
OPT	O-phthalaldehyde
P2X7	ATP purinergic type 2X7
PAMPs	Pathogen-associated molecular patterns
PBS	Phosphate buffered saline
PD	Parkinson disease
PFC	Prefrontal cortex
PRRs	Pattern recognition receptors
PYD	Pyrin domain
RARs	Retinoic acid receptors
RIG	Retinoic acid-inducible gene
RIR	(RIG)-like RNA helicases
ROS	Reactive oxygen species
SABC	HRP-Streptavidin Conjugate
SAD	Seasonal affective disorder
SAL/CMS	Saline/chronic mild stress
SF	Sevoflurane
SNRIs	Serotonin Norepinephrine Reuptake Inhibitors
SP	Sucrose preference
SphK1/S1P	Sphingosine Kinase1 and Sphingosine-1-phosphate
SSRIs	Selective Serotonin Reuptake Inhibitors
TBARS	Thiobarbituric acid reactive substances
TCA	Trichloroacetic acid
TCAs	Tricyclic Antidepressants
TetCAs	Tetracyclic Antidepressants
TIR	Toll/IL-1 receptor
TLRs	Toll-like receptors
TMB	Tetramethylbenzidine
TNF-α	Tumor necrosis factor-alpha
TrkB	Tropomyosin-related kinase B
TST	Tail suspension test
UNX	Uninephrectomized
XCHT	Xiao-Chai-Hu-Tang

List of Tables

Table no.	Title	Page no.
т	The applied stressors of the CUMS depression model and	47
Ι	their duration during the experiment.	47
	Effect of morin hydrate on the behavioral changes that	
1	occurred in the forced swimming test in the CUMS-subjected	91
	rats.	
	Effect of morin hydrate on the behavioral changes that	
2	occurred in the sucrose preference test in the CUMS-	94
	subjected rats.	
	Effect of morin hydrate on the behavioral changes that occurred in	
3	the open field test in the CUMS-subjected rats.	97
	Histopathological alterations in different areas of the brain	
4	cortex, hippocampus and striatum in the CUMS-subjected	100
-	rats.	100
	Effect of morin hydrate on the neurotransmitters content	
5	changes in brain cortex and hippocampus of the CUMS-	103
	subjected rats.	
	Effect of morin hydrate on oxidative stress markers content	
6	in the brain cortex and hippocampus of the CUMS-subjected	106
	rats.	
	Effect of morin hydrate on the Interleukin-1β (IL-1β) level	
7	changes in the cortex and hippocampus of the CUMS-	109
	subjected rats.	
	Effect of morin hydrate on the tumor necrosis factor-alpha	
8	(TNF-α) level changes in the cortex and hippocampus of the	110
	CUMS-subjected rats.	
	Effect of morin hydrate on the Toll-like receptor-4 (TLR-4)	
9	level changes in the cortex and hippocampus of the CUMS-	111
	subjected rats.	
	Effect of morin hydrate on the NOD like receptor	
10	inflammosomes (NLRP3) level changes in the cortex and	112
	hippocampus of the CUMS-subjected rats.	
	Effect of morin hydrate (15mg/Kg) on the caspase-1(CASP-	
11	1) level in the cortex and hippocampus of the CUMS-	113
	subjected rats.	
<u> </u>	Effect of morin hydrate (15mg/Kg) on the caspase-3	
12	(CASP-3) level changes in the cortex and hippocampus of	116
	the CUMS-subjected rats.	

List of Figures

Figure	Title	Page
no.		
i	Different brain regions are implicated in the major	5
	depressive disorder	
ii	Aspects of overall CNS functioning and its relation with	7
	different monoamines	
iii	The Pathway of Stress-induced Depression Stimulating	10
	Inflammatory Mediators.	
iv	Effect of NLRP3 inflammosomes in inflammatory and	12
	apoptotic pathways	
V	The schematic diagram showing the mode of actions of	16
	the different antidepressants.	
vi	A diagram depicting the learned helplessness	18
	screening/avoidance test	
vii	Effect of chronic stress on the stress hormones,	20
	neurotrophic factors, and cytokines and the oxidative	
	stress network	
viii	The chronic restraint stress (CRS).	21
ix	The chronic Social Defeat Stress (CSDS) model.	23
X	The chemical structure of Morin hydrate A: 3D structure,	28
	B: 2D structure.	
xi	Diagrammatic scheme for animal groups of the potential	39
	protective dose of morin hydrate in the CUMS model in	
	rats screening phase.	
xii	Diagrammatic scheme for animal groups for studying the	41
	mechanisms underlying of the potential protective dose of	
	morin hydrate in the CUMS model.	
xiii	Timeline of the experimental procedure, showing 4 weeks	47
	experiment conduction and behavioural tests	
xiv	Forced Swimming Test Apparatus (a) Side view (b) Top	49
	view.	
XV	Open Field Test Apparatus.	51
xvi	Standard calibration curve for total protein	61
xvii	5-Hydroxytryptamine standard curve.	65

xviii	Epinephrine standard curve	68
xix	Norepinephrine standard curve	68
XX	Standard curve of Interleukin-1βeta.	76
xxi	Standard curve of Tumor necrosis factor-alpha and Toll-	79
	like receptor-4	
xxii	Standard curve of NOD-like receptor family, pyrin	82
	domain-containing 3.	
xxiii	Standard curve Caspase-1.	86
xxiv	Standard curve Caspase-3	88
1	Effect of morin hydrate (15 and 30 mg/Kg) on the	92
	behavioral changes that occurred in the forced swimming	
	test in the CUMS-subjected rats.	
2	Effect of morin hydrate on the behavioral changes that	95
	occurred in the sucrose preference test in the CUMS-	
	subjected rats.	
3	Effect of morin hydrate on the behavioral changes that	98
	occurred in the open field test in the CUMS-subjected	
	rats.	
4	Effect of the different doses of morin hydrate on the	101
	histopathological alternations in the brain cortex and	
	hippocampus of CUMS subjected-rats.	
5	Effect of morin hydrate on neurotransmitters content	104
	changes in the brain cortex and hippocampus in the	
	CUMS-subjected rats.	
6	Effect of morin hydrate on oxidative stress markers	107
	content in the cortex and hippocampus of the CUMS-	
	subjected rats.	
7	Effect of morin hydrate on the markers of the	114
	inflammasome pathway in the brain cortex and	
	hippocampus of the CUMS-subjected rats.	
8	Effect of morin hydrate (15 mg/Kg) on the caspase-3	117
	(CASP-3) level changes in the cortex and hippocampus of	
	the CUMS-subjected rats.	