

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Department of Structural Engineering

Behavior of Double Layer Steel Roof Joints to Different Loads

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING (STRUCTURAL)

Submitted by

Reham Milad Kamel Samaan

Bachelor of Science in Civil Engineering
Faculty of Engineering, Ain Shams University, 2017
Supervised by

A. Prof. Said Yousif Aboul Haggag

Associate Professor, Structural Engineering
Department
Faculty of Engineering
Ain Shams University

A. Prof. Ahmed Mohamed Abdelkhaleg Ebid

Associate Professor, Structural Engineering and Construction Management Department Faculty of Engineering and Technology

Future University in Egypt

Dr. Mohamed Mostafa Korashy

Assistant Professor, Structural Engineering
Department
Faculty of Engineering
Ain Shams University

Faculty of Engineering Ain Shams University Cairo, 2022

Ain Shams University Faculty of Engineering Department of Structural Engineering

Behavior of Double Layer Steel Roof Joints to Different Loads

Submitted by

Reham Milad Kamel Samaan

Bachelor of Science in Civil Engineering
(Building Engineering Program)
Faculty of Engineering, Ain Shams University, 2017

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Mazhar Mohamed Saleh	
Professor of Steel Structures and Bridges Structural Engineering Department – Faculty of Engineer	ing, Cairo University
Prof. Dr. AbdElrahim Khalil Dessouki	
Professor of Steel Structures and Bridges	
Structural Engineering Department – Faculty of Engineer	ing, Ain Shams
University	
A. Prof. Dr. Ahmed Mohamed Abdelkhaleq Ebi	id
Structural Engineering and Construction Management De of Engineering and Technology, Future University in Egy	•

RESEARCHER DATA

Name : Reham Milad Kamel Samaan

Date of Birth : Aug 8, 1994

Place of Birth : Cairo, Egypt

Nationality : Egyptian

University : B.Sc. in Civil Engineering (Building Engineering

Program), Faculty of Engineering, Ain Shams

Degree University, 2017.

Current Job : Teaching Assistant, Faculty of Engineering and

Technology, Future University in Egypt

Signature Reham Milad

Date:

STATEMENT

This thesis is submitted as partial fulfillment of the requirements for

the Degree of Master in Science in Civil Engineering (Structural),

Faculty of Engineering, Ain Shams University.

No part of the thesis has been submitted for a degree or a qualification

at any other University or Institution.

Date:

Name: Reham Milad Kamel

Signature:

ACKNOWLEDGMENT

First and foremost, I thank God Almighty for giving me the opportunity and guidance to achieving my goal.

I would like to acknowledge and give my warmest thanks to my supervisors Prof. Said Yousif Aboul Haggag, Assoc. Prof. Ahmed Ebid Abd El Khalik and Dr. Mohamed Mostafa Korashy who made this work possible and for all their help and advice with this thesis.

I would also like to acknowledge *Dr. Hosam ElHegazy* for his support through the process of writing this thesis. I would like to express my very great appreciation to *Eng. Abd ElRahman* for his help through this research. I must express my special thanks my friends *Eng. Dina Hesham* and *Eng. Kareem Hany* for providing me with unfailing support and continuous encouragement.

Finally, I must express my very profound gratitude to my parents for their support throughout my years of study. This accomplishment would not have been possible without them.

ABSTRACT

During the past decades, Space trusses have been used due their aesthetic appearance and capacity to cover large spans. There are types of steel space trusses such as double layer grid system, two parallel layers interconnected by vertical, horizontal, and diagonal members. Double layer grid system provides more rigidity and prevents the deflection of the structure. The jointing system is the main component in these structures. Many researchers are required to behavior of the joints in space trusses. The best way to cover this point is the parametric study on behavior of the joint in the double layer space trusses. There are different methods used in these decades the proposed method is not covered yet. The main purpose of this study is to propose a methodology that the behavior of double layer steel roof joints. The data used in this research was collected according to theoretical values, model geometry, and different loads. The models use the finite element method to give recommendations or guidelines to study the stability of behavior of double layer steel space truss joints. The Node and bolts have been modelled on SolidWorks and comparison between results of analytical model has been made by ANSYS and collector models are used to validate the proposed models. The joint has been analyzed to study the distribution of surface and internal stresses using Finite Element Method.

Keywords: Space truss; Double layer grid system; Nodes; MERO system; Analytical Model; Finite Element Model; SolidWorks® ANSYS® Software.

CONTENTS

CURRICULUM VITAEIII
ACKNOWLEDGMENT
ABSTRACTII
CONTENTSIII
LIST OF FIGURESVI
LIST OF TABLESX
CHAPTER (1) - INTRODUCTION
1.1 OVERVIEW
1.2 PROBLEM STATEMENT
1.3 THESIS OBJECTIVE
1.4 RESEARCH CONTRIBUTION
1.5 RESEARCH METHODOLOGY
1.6 THESIS OUTLINE
CHAPTER (2) - LITERATURE REVIEW
2.1 INTRODUCTION
2.2 SPACE GRID STRUCTURES BACKGROUND
2.3 SYSTEMS OF SPACE STRUCTURES BACKGROUND
2.4 JOINTING SYSTEMS BACKGROUND
2.4.1 Mero system
2.4.2 Disc Node
2.4.3 Bowl Node
2.4.4 Cylinder Node
2.4.5 Block Node
2.4.6 Space Deck System
2.4.7 Triodetic system
2.4.8 Unistrut system
2.4.9 Oktaplatte System
2.4.10 Unibat System
2.4.11 Nodus System
2.4.12 NS Space truss

2.5 BEHAVIOR OF JOINTS USED IN SPACE GRID STRUCTURES UNDER ACTUAL CONDITIONS BACKGROUND	. 21
CHAPTER (3) – FORCES DISTRIBUTION IN DOUBLE-LAYER GRIDS	. 28
3.1 DESCRIPTION OF THE DOUBLE LAYER GRID	. 28
3.2 ANALYSIS OF THE DOUBLE LAYER GRID	. 29
3.2.1 Space Truss Model 1:	. 31
3.2.2 Space Truss Model 2:	. 32
3.2.3 Space Truss Model 4:	. 33
3.2.4 Space Truss Model 6:	. 34
CHAPTER (4) – VALIDATION OF ANSYS FINITE ELEMENT MODELLING	. 35
4.1 INTRODUCTION	. 35
4.2 THE VERIFICATIONS	. 35
4.2.1 General	35
4.2.2 Verification with the Experimental Work	. 36
4.3 FINITE ELEMENT MODELING	. 38
4.3.1 Description of the THH connector	. 38
4.3.2 Description of Model	. 39
4.3.3 Results for Experimental Work Simulation	. 41
CHAPTER (5) – PARAMETRIC STUDY AND ANALYTICAL MODELLING OF BOLTED SPHERICAL JOINT	. 44
5.1 INTRODUCTION	. 44
5.2 FINITE ELEMENT MODELLING	. 44
5.2.1 ANSYS [43] Elements Used for The Models	. 44
5.2.2 Modelling Geometry	. 46
5.2.3 Material Properties	. 48
5.2.4 Loading and Setting of The Boundary Conditions	. 48
5.3 VARIABLES OF THE PARAMETRIC STUDY	. 49
CHAPTER (6) - RESULTS AND DISCUSSION OF ANALYTICAL STUDY	. 53
6.1 GENERAL	. 53
6.2 RESULTS OF THE FINITE ELEMENT MODELING	. 53
6.2.2 Stress Distribution of Bolted Spherical Joint	. 53

6.2.3 Effect of increasing the diameter of the spherical joint on the internal
stresses
6.2.4 Effect of increasing the Threading lengths on the stresses
CHAPTER (7) – CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES . 79
7.1 INTRODUCTIONS
7.2 CONCLUSIONS
REFERENCES82
88

LIST OF FIGURES

Figure 1 Full-Size Test Pyramidal Unit	[3]7
Figure 2 A view of the damaged roof of	covers induced by rainwater
ponding [9]	9
Figure 3 Welded node of space grid st	ructure: 1) bottom chord; 2)
diagonal rods; 3) steel plate [10]	10
Figure 4 Test set-up [11]	10
Figure 5 Collapse in connections [11].	10
Figure 6 A standard Mero connector	[12]12
Figure 7 Disc-Node connector [12]	13
Figure 8 Bowl-Node connector [12]	13
Figure 9 Cylinder-Node connector [12	2]14
Figure 10 Space Deck System [12]	15
Figure 11 Triodetic System [12]	16
Figure 12 Unistrut System [12]	17
Figure 13 Oktaplatte System [12]	18
Figure 14 Unibat System [12]	19
Figure 15 Nodus System [12]	20
Figure 16 NS Space System [12]	21
Figure 17 Basic elements used for vari	ious types of double-layer grids
	28
Figure 18 Schematic view of members	s of a Mero type steel space
roof structure	29
Figure 19 Schematic for double layer §	grid space frame30
Figure 20 Space Truss Model 1	
Figure 21 Space Truss Model 2	32
Figure 22 Space Truss Model 4	33
Figure 23 Space Truss Model 6	34
Figure 24 Plan and Isometric view of T	THH Connector [42]37
Figure 25 All octagonal faces and geor	metry of THH connector [42] 37
Figure 26 Real Scale connector model	preparation [42]
(a) Mild steel cube with all side dimen	sions of 150mm.
(b) The trimmed cube corners.	(c) THH connector with
inserted threaded bolts.	(d) Strain gauges attached to
the faces of THH connector	38
Figure 27 Modeling of the THH conner	ctor 10

Figure 28 Mesh size considered for mesh sensitivity analysis	41
Figure 29 Loading of the specimen	42
Figure 30 Typical maximum principal stress value obtained from	
ANSYS	42
Figure 31 Geometry of SOLID187	45
Figure 32 Geometry of the CONTA174	45
Figure 33 Geometry of TARGET170	46
Figure 34 Modelling Geometry of the joint connector	47
Figure 35 Contact and Target surfaces of the bolt and joint	
connector	47
Figure 36 Material properties of the bolted spherical joint	48
Figure 37 Loadings of the connector	49
Figure 38 Angles between diagonal and chord members	51
Figure 39 Maximum principal stresses of the spherical joint 1	54
Figure 40 Internal stresses of the spherical joint 1	54
Figure 41 Maximum principal stresses of the spherical joint 2	54
Figure 42 Internal stresses of the spherical joint 2	55
Figure 43 Maximum principal stresses of the spherical joint 3	55
Figure 44 Internal stresses of the spherical joint 3	55
Figure 45 Maximum principal stresses of the spherical joint 4	56
Figure 46 Internal stresses of the spherical joint 4	56
Figure 47 Maximum principal stresses of the spherical joint 5	56
Figure 48 Internal stresses of the spherical joint 5	57
Figure 49 Maximum principal stresses of the spherical joint 6	57
Figure 50 Internal stresses of the spherical joint 6	57
Figure 51 Maximum principal stresses of the spherical joint 7	58
Figure 52 Internal stresses of the spherical joint 7	58
Figure 53 Maximum principal stresses of the spherical joint 8	58
Figure 54 Internal stresses of the spherical joint 8	59
Figure 55 Maximum principal stresses of the spherical joint 9 \dots	59
Figure 56 Internal stresses of the spherical joint 9	59
Figure 57 Maximum principal stresses of the spherical joint 10 \dots	60
Figure 58 Internal stresses of the spherical joint 10	60
Figure 59 Maximum principal stresses of the spherical joint 11 \dots	60
Figure 60 Internal stresses of the spherical joint 11	61
Figure 61 Maximum principal stresses of the spherical joint 12 \dots	61
Figure 62 Internal stresses of the spherical joint 12	61

Figure 63 Maximum principal stresses of the spherical joint 13	62
Figure 64 Internal stresses of the spherical joint 13	62
Figure 65 Maximum principal stresses of the spherical joint 14	62
Figure 66 Internal stresses of the spherical joint 14	63
Figure 67 Maximum principal stresses of the spherical joint 15	63
Figure 68 Internal stresses of the spherical joint 15	63
Figure 69 Maximum principal stresses of the spherical joint 16	64
Figure 70 Internal stresses of the spherical joint 16	64
Figure 71 Maximum principal stresses of the spherical joint 17	64
Figure 72 Internal stresses of the spherical joint 17	65
Figure 73 Maximum principal stresses of the spherical joint 18	65
Figure 74 Internal stresses of the spherical joint 18	65
Figure 75 Maximum principal stresses of the spherical joint 19	66
Figure 76 Internal stresses of the spherical joint 19	66
Figure 77 Maximum principal stresses of the spherical joint 20	66
Figure 78 Internal stresses of the spherical joint 20	67
Figure 79 Maximum principal stresses of the spherical joint 21	67
Figure 80 Internal stresses of the spherical joint 21	67
Figure 81 Maximum principal stresses of the spherical joint 22	68
Figure 82 Internal stresses of the spherical joint 22	68
Figure 83 Maximum principal stresses of the spherical joint 23	68
Figure 84 Internal stresses of the spherical joint 23	69
Figure 85 Maximum principal stresses of the spherical joint 24	69
Figure 86 Internal stresses of the spherical joint 24	69
Figure 87 Maximum principal stresses of the spherical joint 25	70
Figure 88 Internal stresses of the spherical joint 25	70
Figure 89 Maximum principal stresses of the spherical joint 26	70
Figure 90 Internal stresses of the spherical joint 26	
Figure 91 Maximum principal stresses of the spherical joint 27	71
Figure 92 Internal stresses of the spherical joint 27	71
Figure 93 Maximum principal stresses of the spherical joint 28	72
Figure 94 Internal stresses of the spherical joint 28	72
Figure 95 Maximum principal stresses of the spherical joint 29	72
Figure 96 Internal stresses of the spherical joint 29	73
Figure 97 Maximum principal stresses of the spherical joint 30	73
Figure 98 Internal stresses of the spherical joint 30	73
Figure 99 Maximum principal stresses of the spherical joint 31	74