

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Irrigation & Hydraulics Department

FRAMEWORK FOR ASSESSMENT OF THE NATIONAL WATER SECURITY WITH APPROPRIATE INDICATORS IN EGYPT

A Thesis submitted in partial fulfilment of the requirements of the degree of **Doctor of Philosophy**

by Rabab Gaber Hassan Abbas

B.Sc. in Civil Engineering, 1996 M.Sc. Civil Engineering, Luneburg University, Germany

Supervised by

Prof. Dr. Mohamed Mohamed Nour El Din

Professor at Irrigation and Hydraulics Department Faculty of Engineering - Ain Shams University

Prof. Dr. Ghada Mahmoud Samy Ezizah

Professor of Hydraulics-

Faculty of Engineering - Ain Shams University

Dr. Ahmed Mohamed Balah

Assistant Professor - Irrigation and Hydraulics Faculty of Engineering - Ain Shams University

Dr. Nader Ali Said El Masry

Director, Bilateral Cooperation Projects -Ministry of Water Resources and Irrigation

Cairo – Egypt (2021)

بليمال المحالم

"هالوا سبحانك لا علم لنا إلا ما علمتنا إنك أندت العليم المكيم"

> ر اللهرق العظريم

الأية رقم (٣٢) من سورة البقرة

Ain Shams University- Faculty of Engineering Irrigation & Hydraulics Department

FRAMEWORK FOR ASSESSMENT OF THE NATIONAL WATER SECURITY WITH APPROPRIATE INDICATORS IN EGYPT

Rabab Gaber Hassan Abbas

Master of Science In Civil Engineering

(Irrigation and Hydraulics)

Faculty of Engineering, Lunchurg University, Germany, 2005

A Thesis Submitted in Partial Fulfilment of Requirements of

Doctor of Philosophy Degree

Examiners' Committee

Name and Affiliation

Prof. Dr. Anas Mohamed Abol Ela El Molla Irrigation and Hydraulies Al Azhar University

Prof. Dr. Abdel Qawi Ahmed Mokhtar Khalifa Irrigation and Hydraulics , Ain Shams University

Prof. Dr. Mohamed Mohamed Nour El Din Irrigation and Hydraulies, Ain Shams University

Prof. Dr. Ghada Mohamed Samy Ezizah Irrigation and Hydraulics . Ain Shams University

Date:25 December 2021 Cairo-Egypt

Ain Shams University- Faculty of Engineering Irrigation & Hydraulics Department

Doctor of Philosophy Degree

Researcher Name: Rabab Gaber Hassan Abbas

Thesis Title: Framework for Assessment of the National Water Security

with Appropriate Indicators in Egypt

Degree: Doctor of Philosophy in Engineering

Supervision Committee

Prof. Dr. Mohamed Mohamed Nour El Din Prof. Dr. Ghada Mahmoud Samy Ezizah Dr. Ahmed Mohamed Balah Dr. Nader Ali Said El Masry

		//	:	تاريخ المناقشة
			<u>:۱</u>	الدراسات العلي
ت الرسالة بتاريخ :/	اجيزه			ختم الإجازة:
	/	/:	الكلية	موافقة مجلس
••••	/	/:	لجامعة	موافقة مجلس ا

RESEARCHER DATA

Name : Rabab Gaber Hassan Abbas

Date of birth : 14 March 1973

Place of birth : Cairo- Egypt

Last academic degree : M.Sc. Civil Engineering,

Field of specialization : Irrigation and Hydraulics

University issued the degree : Luneburg University, Germany

Date of issued degree : 2005

Current job : General Director of Water Resources,

Planning sector, Ministry of Water

Resources and Irrigation

STATEMENT

This thesis is submitted as a partial fulfilment of Doctor of Philosophy in

Civil Engineering Engineering, Faculty of Engineering, and Ain shams

University.

The author carried out the work included in this thesis, and no part of it

has been submitted for a degree or a qualification at any other scientific

entity.

Rabab Gaber Hassan Abbas

Signature

Rabab Gaber

Date: 25th December 2021

vi

ACKNOWLEDGMENT

I would like to take this opportunity to first and foremost thank God for being my guide and strength throughout my research.

I would like to express my gratitude and special appreciation to my supervisor Prof. Dr. Mohamed Nour El-Din for His special interest, valuable advice and suggestions provided me with a great guidance to improve my research. Many thanks are going to Prof. Dr. Ghada Samy whose unremitting advice and inspirational help during my Ph.D.

I would like to acknowledge wonderful support of Dr. Ahmed Balah and his valuable comments and ideas. Many thanks are going to Dr. Nader El-Masry for his continuous support and guidance to improve this research. Thanks for the department of Irrigation and Hydraulics members for their cooperation with all my administration processes. Also I am grateful to all my colleagues, friends for their support.

Last but not least, special thanks to my family for their continued affection and keeping me motivated, without their tremendous understanding and encouragement in the past few years, it was impossible for me to complete this research.

December 2021

THISIS SUMMARY

Researched Name: Rabab Gaber Hassan Abbas

Thesis Title: FRAMEWORK FOR ASSESSMENT OF THE NATIONAL WATER SECURITY WITH APPROPRIATE INDICATORS IN EGYPT

Degree: Doctor of philosophy in Engineering

Water is the source of life and the main input in nearly every socioeconomic activity. Egypt faces great challenges, fixed share of Nile water, imitated of groundwater, imitated of rainfall, in addition to the effect of climate change on water availability. Population rapidly increase and, with this limited water resources the gap between water resources and demand is growing.

Commonly used water status evaluation approaches such Water Scarcity, Water Stress and Water Poverty indicate that Egypt water situation is getting worse under these challenges, and does not provide tools to guide or achieve improvement in water management to better utilize available resources and secure the growing demands. This is logic because all of these approaches focus on the supplied water resources volume, which is limited in our case of Egypt. Also these approaches do not say anything about water quality, water use efficiency, water productivity, etc.

With the growing global Water Scarcity in many places around the world, the Water Security approach and the Water Security Index (WSI) is becoming attractive tool for evaluating and monitoring progress in water management. Water Security Index is not only a tool to estimate the current situation but we can use it also to give water mangers a tool for future strategic planning and to define measures and actions which have to be taken to enhance the water situation.

The main objective of this research is to introduce methodology to evaluate water security in Egypt according to local conditions and under the above mentioned challenges and to give the water mangers a tool to be used to enhance water security. Water Security in Egypt has not been assessed or quantified before in a way that enables water managers to have

an outlook for future situation to achieve water security in a comprehensive way. In the current research, a framework to assess WSI is developed to provide water managers with guidelines to enhance the current and future situation and to identify the strengths and weaknesses in water management process.

The thesis started by using the Asian Water Development Bank Outlook "AWDO" methodology, which is widely used by almost all Asian countries and applied by the international community. The water security index of AWDO is assessed based on five key indicators reflecting all issues related to water management (household water security, economic water security, urban water security, environmental water security, resilience to water—related disasters). Data of 2020 is employed to calculate the water security index for Egypt which was found to be at moderate level and huge efforts are needed to enhance this index in order to face the current water challenges. Also, several measures are identified in our research to raise the WSI score and to enhance the water security situation in Egypt.

In order to have realistic representation and to accurately calculate the WSI for Egypt under our local conditions, some modifications are introduced to the well-known AWDO methodology. In the current research a new framework is modified and developed, which is suitable to the Egyptian case and the available data. Main modifications for the newly developed WSI for Egypt included (Water availability, productivity, water-related disasters, Environmental water security and State Capacity). Targets are set in accordance to the SDGs 2030 for each of the key indicators that can raise the WSI score to ensure compatibility with the SDGs 2030 goals. The modified Water Security Index methodology under the Egyptian local conditions is also used to predict the Water security index for the year 2030 based on assumed projections for several water shortage scenarios. These future scenarios helped in drawing a road map for necessary measures needed to secure the water situation and consequently the economic growth.

In addition to that, the current research applied a Decoupling model for Egypt and calculated the Decoupling Index (DI) for Egypt using the 2020

data. Decoupling refers to the economy's ability to grow without negative environmental impacts. Decoupling is an important tool to test water technologies, and measures of the National Water Resources Plan of Egypt to enhance the water security by analyzing the relationship between economic development and water consumption. This thesis identifies some technological solutions and measures that contribute to the implementation of decoupling policy in agricultural, industrial and domestic water sectors.

The overall results in this study indicates that the proposed framework is capable for quantifying the water security of a river basin considering all aspects and taking into consideration the blue and grey water footprint. In addition, the results from the proposed framework guide the water management and monitor its progress towards a defined target.

By accurately evaluating and predicting water scarcity and droughts, the decision makers can improve efficient water management plans and proactive mitigation to minimize social, environmental and economic impacts significantly. The overall Water Security Index can be improved by enhancing KD4 and KD5 through adoption of measures to enhance water quality, reduction of pollution, and enhance governance in water sector. It is strongly recommended to evaluate this index periodically to monitor progress in water security and define strengths, weakness or shortcomings.

Key words: Egypt, Water Security, Water Security Index, Decoupling

TABLE OF CONTENTS

RESEARCHER DATA	iii
STATEMENT	vi
ACKNOWLEDGMENT	vii
THISIS SUMMARY	viii
TABLE OF CONTENTS	xi
LIST OF FIGURES	xiv
LIST OF TABLES	xv
LIST OF APPENDICES	xvi
LIST OF ABBREVIATIONS	xvii
CHAPTER ONE	1
INTRODUCTION	1
1.1General	1
\.\Problem Definition	2
1.3Objective	2
1.4Research Methodology	2
1.5Thesis Structure	3
CHAPTER TWO	4
2 BACKGROUND AND LITERATURE REVIEW	4
2.1Introduction	4
2.2Water Security: Emerging Trend and Legitimacy	6
2.3Water Security and Analogous Concepts	7
2.4The Emerging Trend of Water Security	11
2.5Water-Energy-Food Nexus and Water Security	12
2.6Water Scarcity and Food Gap in Egypt	12
2.7 Global Food Security	14
2.8The Human Water Security	14
2.9The Determinants of Water Insecurity	15
2.10Literature Review (Pervious Studies)	17
2.11Overall Conclusion	18
CHAPTER THREE	19
3DEVELOPMENT OF WATER SECURTY INDICES	19

3.1Introduction	19
3.2Different Methods for Introducing WS Indicators	20
3.2.2Water Security Indicators Based on the Canadian Experiences	21
3.3Approaches for Framing and Assessment of Water Security	22
3.3.1Development-based approaches	
3.3.2Risk-based approach	22
3.4The Appropriate Water Security Index for Egypt	23
3.4.1The Asian Water Development Outlook AWDO 2013-2016	
3.5Assessment of Egypt Water Security Index	27
3.6Water Security Index Calculation for Egypt Based on AWDO 2016	
Methodology	
3.6.1KD1- Household water security	
3.6.2KD2- Productive Economies Key Dimension	28
3.6.2.1 Agricultural economies indicator	
3.6.2.2Industrial water use assessment	
3.6.2.3Water use for energy assessment	
3.6.2.4Overall productive economies key dimension	
3.6.3KD3 - Urban Water Security key Dimension	
3.6.4KD4 – Environmental water security	
3.6.4.1River basin health	
3.6.5KD5 - Resilience to Water-Related Disasters	32
Evaluation of KD5	
3.6.6Overall Water Security Index	36
3.7Analysis and Discussion Based on the WSI Calculation for Egypt in Col AWDO	
3.8Recommendation to Enhance the Key Dimensions of Water Security	20
Index	
3.8.1Enhancement by implementing some measures and actions	
•	
CHAPTER FOUR	
4.Proposed Framework for Assessment of Water Security	
4.1The Proposed Framework Methodology for the Egyptian WSI	41
4.2Assessment WSI for Egypt in the context of the proposed framework	44
4.2.1KD1- Water availability:	
4.2.2KD 2 - Water productivity	
4.2.2.1 Agricultural water security	
4.2.2.2 Industrial water security	
4.2.2.3Hydropower energy water security	
4.2.3KD3 - Water-related disasters	
4.2.3.1Flood disaster	
4.2.3.2Drought disaster	
4.2.4KD4 - Environmental water security index	
4.2.4.1 Pollution "River Health Indicator"	50