

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

IMPROVING ENERGY EFFICIENCY USING MICROCONTROLLER BASED EMBEDDED SYSTEMS

Submitted By

Ahmad Hussein Abdel Karim Mohamed

B.Sc. of Electrical Power and Machinery, Faculty of Engineering, Menoufia University, 2004

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences faculty of Graduate Studies and Environmental Research
Ain Shams University

APPROVAL SHEET

IMPROVING ENERGY EFFICIENCY USING MICROCONTROLLER BASED EMBEDDED SYSTEMS Submitted By

Ahmad Hussein Abdel Karim Mohamed

B.Sc. of Electrical Power and Machinery, Faculty of Engineering, Menoufia University, 2004

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Engineering Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Mohamed ezzat abdel rahman

Prof. Department of Power and Machinery Engineering Faculty of engineering Ain Shams University

2-Dr. kahled fathy gaber

Assistant professor department of accounting College of administrative sciences ,modern University of sciences and technology

3- Prof. Dr. Mohsen abdelhamid tawfik

Prof of systems control engineering department of engineering sciences College of graduate studies and environmental research Ain Shams University

4-Prof. Dr. Amed farghali mohmed hassan

Prof. Cost accounting Faculty of commerce Ain Shams University

IMPROVING ENERGY EFFICIENCY USING MICROCONTROLLER BASED EMBEDDED SYSTEMS

Submitted By

Ahmad Hussein Abdel Karim Mohamed

B.Sc. of Electrical Power and Machinery, Faculty of Engineering, Menoufia University, 2004

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In

Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1-Prof. Dr. Mohsen Abdelhamid Tawfik

Prof of Systems Control Engineering Department of Engineering Sciences College of Graduate Studies and Environmental Research Ain Shams University

2-Prof. Dr. Amed Farghali Mohmed Hassan

Prof. cost accounting Faculty of commerce Ain Shams University

3-Dr. Ahmed Tariq Yahya Al - Awady

Department of Engineering Sciences College of Graduate Studies and Environmental Research Ain Shams University

2022

ACKNOWLEDGEMENT

First and foremost, I would like to thank my advisor **Prof Mohsen**Tawfik for his advice, encouragement, support and patience throughout every step in the process of this thesis Thank you for support and understanding over the past five years

A Sincere thanks go to **Prof Ahmed Farghaly** for giving me support and guidance through my master degree I express my appreciation for providing constant encouragement

I would also thank **Dr** Ahmed El Awady for his efforts to help and support me to continue until standing in this place

I would finally thank my Parents, brothers and my wife who have been supporting me in all means in finishing my thesis.

ABSTRACT

Energy Efficiency is central to achieving the interrelated economic, social and environmental goals of sustainable development. improving energy efficiency is about using technology that requires less energy to perform the same function plus the share of renewables in final energy consumption. And it goes beyond energy conservation behavior which results in the use of less energy.

The research focuses on the deployments of improving energy efficiency technologies as a basic infrastructure for smart environment. household energy management systems apply automation technologies to manage and control residential energy use and costs, also make energy reductions through energy efficiency measures more visible to customers, and extend energy management systems to Internet of things applications.

The research proposes a cost effective and power saving approach to improve energy efficiency and control home appliances using microcontroller based embedded systems with occupancy detection to detect the presence of people and light sensors to measure light intensity. The proposed system is controlled by an Atmega microcontroller, a prototype has been designed, developed and tested specifically to meet the requirements of efficient energy light system. The work includes knowledge regarding architecture of microcontroller, hardware and software considerations increase the acceptability of the work because the cost is less and other features are more useful.

TABLE OF CONTENTS

ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTSI
LIST OF TABLESIV
LIST OF FIGURESV
LIST OF ABBREVIATIONSVII
CHAPTER 1: INTRODUCTION
1.1 Preface1
1.2 Problem Definition and Motivation4
1.3 Research Objectives
1.3.1 First Objective:7
1.3.2 Second Objective:8
1.3.3 Third Objective: 8
1.4 Thesis Outline9
1.5 Summary
CHAPTER 2: LITRATURE REVIEW
2.1 Introduction
2.2 Energy Management Systems
2.2.1 Home Energy Management System (HEMS)17
2.2.2 Electricity metering
2.2.3 Smart Metering
2.2.4 Smart Metering Benefits
2.2.4.1 Customer benefits
2.2.4.2 Utilities benefits
2.2.4.3 Environmental benefits23
2.3 Energy Efficiency with Internet of Things23
2.3.1 Architecture of Internet of Things
2.3.2 Technologies of Internet of Things27
2.3.3 Internet of Things Evolution Towards Energy Efficiency29
2.3.3.1 Environmental benefits
2.3.3.2 Financial benefits30
2.3.3.3 Social benefits31
2.4 Energy Efficiency using Embedded Systems31
2.4.1 Difference between Microcontroller and microprocessor32
2.4.2 Choosing a Microcontroller34
2.5 Summary35

CHAPTER 3: HOME ENERGY MARKET AND ANALYSIS	
3.1 Introduction	37
3.2 Home Automation System Market:	39
3.2.1 Segmental Analysis	39
3.2.2 SOWT Analysis	41
3.3 Cost-Benefit Analysis	45
3.3.1 Project Definition	47
3.3.2 Costs and benefits identification	48
3.3.3 Estimation of the monetary values	49
3.3.4 Calculation of benefit-cost ratio (BCR)	50
3.3.5 Net Present Value	
3.4 Summary	53
Chapter 4: IMPLEMENTATION FRAMEWORK	
4.1 Introduction	55
4.2 System Description	56
4.3 Implementation Methodology:	62
4.3.1 Block Diagram:	62
4.3.2 Control Unit:	63
4.3.3 Occupancy Sensors	67
4.3.4 Daylight Sensors	69
4.4 Summary	72
CHAPTER 5: SYSTEM DESIGN AND IMPLEMENTATION	
5.1 Introduction	74
5.2 Hardware System Design	75
5.2.1 Circuit Schematic:	75
5.2.2 Power Supply	76
5.2.3 Control Unit (Microcontroller)	77
5.2.4 Motion Sensor Circuit:	81
5.2.5 Light sensor Circuit:	86
5.2.6 Interface Relay Circuit	87
5.3 Software and writing Coding:	90
5.3.1 Flow Chart	90
5.3.2 Firmware and writing code	
5.4 Summary	91
CHAPTER 6: RESULTS AND DISCUSSION	
6.1 Results	92
6.2 Project Evaluation	

6.3 Discussion	94
CHAPTER 7: CONCLUSION	
7.1 Conclusion	99
REFERENCES	108
APPENDIX A	117
APPENDIX B	122

LIST OF TABLES

Table 2.1: Cases of the home EMS	. 15
Table 2.2: Evolution of Smart Metering	20
Table 3.1 lighting power ratings and duty cycle	49
Table 3.2 project basic components prices	50
Table 4.1: Recommended light level	57
Table 5.1 Microcontroller port registers	81
Table 5.2 HC-SR501 Specifications	83
Table 6.1 Output Status	. 93
Table 6.2: Comparison before and after project	93
Table 6.3: Microcontroller pin connections	98

LIST OF FIGURES

Fig 1.1: Sustainable development pillars	2
Fig 1.2: Electricity consumption in Egypt by sector	5
Fig 2.1 Energy Management system evolution	17
Fig 2.2: Integrated framework for home energy management system	19
Fig 2.3: the electromechanical watt-hour meter	20
Fig 2.4 Internet of Things System Structure	24
Fig 2.5 Three-layer architecture	26
Fig 2.6 Sensors and Actuators of the Internet of Things	28
Fig 2.7: Microprocessor Architecture	. 33
Fig 2.8: Microcontroller Architecture,,,,	33
Fig 2.9: Microcontroller Ports	34
Fig 3.1: Home automation market segments	40
Fig 3.2: SWOT analysis	41
Fig 4.1: kWH consumption definition and calculation	58
Fig 4.2: System Block Diagram	62
Fig 4.3: Passive infrared sensor,.	68
Fig 4.4 Passive Infrared sensor	69
Fig 4.5: light dependent resistor sensor	71
Fig 4.6: Light Intensity vs LDR Resistance	72
Fig 5.1: Circuit Schematic	75
Fig 5.2: Block diagram of regulated DC power supply	76
Fig 5.3: 7805 regulator pinout	77
Fig 5.4: Microcontroller Atmega8 pin configuration	78
Fig 5.5: HC-SR501 sensor	81
Fig 5.6: PIR sensor movement detection,	82
Fig 5.7: HC-SR501 components	83
Fig 5.8: Jumper Setting Modes	84
Fig 5.9: Interface HC-SR501 to Microcontroller	85
Fig 5.10: Voltage divider circuit	86
Fig 5.11: PCB Relay	88

Fig 5.12: Relay circuit	. 89
Fig 5.13: Relay contacts	89
Fig 5.14: System flow chart	. 90
Fig 6.1: PIR sensor connected to Atmega microcontroller	94
Fig 6.2: LDR connected to Atmega microcontroller	96
Fig 6.3: PCB layout	97
Fig 6.4: PCB board	. 97

LIST OF ABBREVIATIONS

AC Alternating Current

ADC Analog to Digital Converter

AMI Advanced Metering Infrastructure

AMR Automated Meter Reading

ARM Advance RISC Machine

ASM Assembly programing language

AVR Advanced Virtual RISC

CBA Cost Benefit Analysis

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DAC Digital to Analog Converters

DC Direct current

DCCs Data and Communications Companies

EEPROM Electrically Erasable Programmable Read-Only Memory

EMS Energy management system

GHG Greenhouse Gas

GPIO General-purpose input/output

GPS Global Positioning System

HEMS Home Energy Management System

HVAC Heating, Ventilation, And Air Conditioning

IDE Integrated Development Environment

IoT Internet of Things

IR Infrared Radiation

kWh kilowatt-hour

LCD Liquid Crystal Display

LDR Light Dependent Resistor

MCU Microcontroller unit