Assessing post-contrast acute kidney injury in children with congenital heart disease undergoing cardiac catheterization using cystatin C based equation for estimated glomerular filtration rate

Anhesis

Submitted for partial fulfillment of master degree in Pediatrics

By

Rana Maged Mohammed Mohammed El-Maghrabi

M.B.B.Ch, Misr University for Science and Technology, 2015

Under Supervision of

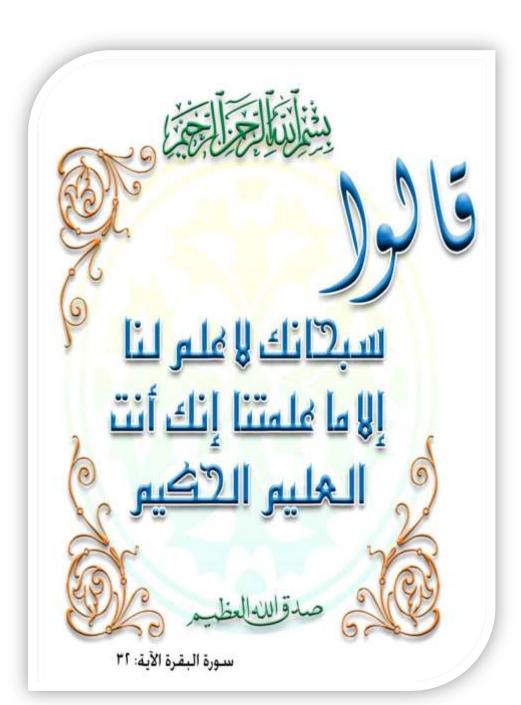
Prof. Dr. Alyaa Amal Kotby

Professor of Pediatrics

Faculty of Medicine, Ain Shams University

Dr. Marwa Waheed Abd El-Hady Nasef

Lecturer of Pediatrics


Faculty of Medicine, Ain Shams University

Dr. Yasser Hassan Mohammed

Lecturer of Pediatrics

Faculty of Medicine, Misr University for Science and Technology

Faculty of Medicine Ain Shams University 2020

First and foremost, I feel always indebted to Allah, The Most Beneficent and Merciful Who gives me the strength to accomplish this work.

My deepest gratitude to my supervisor, **Prof. Dr. Alyaa Amal Kotby**, Professor of Pediatrics, Faculty of Medicine, Ain-Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision. May Allah bless her and keep her a sun lightening the way for the scientific students.

I would like to express my great and deep appreciation and thanks to **Dr. Marwa Waheed Abd El-Hady Nasef**, Lecturer in Pediatrics, Faculty of Medicine, Ain-Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work; also for the efforts and time she has devoted to accomplish this work.

I would like to express my great and deep appreciation and thanks to **Dr. Yasser Hassan Mohamad**, Lecturer in Pediatrics, Faculty of Medicine, Misr University for science and Technology, for the efforts and time he has devoted to complete this work.

I would like to express my great and deep appreciation and thanks to **Dr. Walaa Yousry**, Lecturer in clinical pathology, Faculty of Medicine, Ain-Shams University, for her cooperation and support in laboratory work.

Special thanks to my Parents, to whom I owe everything, my Sisters, brother and to my husband the backbone of my life who are the shiny stars without whose inspiration none of this would have been possible.

🖎 Rana Maged El-Maghrabi

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Acute kidney injury	4
New biomarkers of acute kidney injury	13
Cardiac Catheterization	27
Post-contrast acute kidney injury	38
Patients and Methods	53
Results	64
Discussion	109
Conclusion	123
Limitations	125
Recommendations	126
Summary	127
References	
Arabic Summary	·····-

List of Abbreviations

Abbr. Full-term

AARs : Acute adverse reactions

ACEI : Angiotensin converting enzyme inhibitor

AKI : Acute kidney injury

AKIN : Acute kidney injury network

AUC : Area under Curve BMI : Body mass index

BSA : Body surface area

CHD : Congenital heart disease

CI-AKI : Contrast-induced acute kidney injury

CIN : Contrast-induced nephropathy

CM : Contrast media

COA : Coarctation of aorta

CpA : Compound A

CT : Computerized tomography

Cys C : Cystatin C

eGFR : Estimated Glomerular filtration rateELISA : Enzyme-linked immunosorbent assay

GFR : Glomerular filtration rate

HOCM: High osmolar contrast media

ICM: Iodine Contrast Media

IGFBP7 : Insulin-like growth factor—binding protein 7

IL-18 : Interleukin-18

KDa : Kilo-Dalton

KDIGO: Kidney Disease: Improving Global Outcomes

KIM-1 : Kidney injury molecule 1

L-FABP: Liver-type fatty acid binding protein

LMWH : Low Molecular weight heparin

LOCM: Low osmolar contrast media

MACD: Maximum allowable contrast dose

MRI : Magnetic resonant imaging

NGAL : Neutrophil gelatinase-associated lipocalin

NSAID : Nonsteroidal anti-inflammatory drugs

PA : Pulmonary artery

PAS : Pulmonary artery stenosis

PC-AKI : Post-contrast acute kidney injury

PCI : Percutaneous coronary intervention

PDA : Patent Ductus Arteriosus

pRIFLE: Pediatric Risk, Injury, Failure, Loss, End-Stage

Kidney Disease

RBF : Renal blood flow

ROC : Receiver Operating Characteristic Curve

RV : Right ventricle

sCr : Serum creatinine

SD : Standard deviation

TFA : Tranfemoral approach

TIMP-2: Tissue inhibitor of metalloproteinase-2

TRA : Transradial approach

VSDs : Ventricular septal defects

List of Tables

Table No.	Title	Page No.
Table (1):	Normal GFR values for children	6
Table (2):	Different stages of acute kidney according to different criteria	
Table (3):	Factors associated with changes i creatinine:	
Table (4):	Characteristics of different Bioma AKI	
Table (5):	Definitions of AKI using cys essay:	
Table (6):	Classification of contrast media	45
Table (7):	Preventive measures before, dur after cardiovascular procedures	_
Table (8):	Category of AKI by eGFR using cybased equation	•
Table (9):	Descriptive Data regarding Demo	•
Table (10):	Descriptive data regarding consar family history and medications	•
Table (11):	Descriptive data re echocardiographic diagnosis of patients	study
Table (12):	Descriptive data regarding type of catheterization.	
Table (13):	Descriptive data regarding the cont	rast70

Table (14):	Descriptive data regarding types of anaesthesia received by the patients70
Table (15):	Percentage of patients who developed post-catheterization complications
Table (16):	Comparison between different AKI biomarkers at different assessment times (T1, T2 and T3)
Table (17):	Comparison between (T1, T2, T3) eGFR using Schwartz and Cys C based equation
Table (18):	Comparison between percentage of change of AKI biomarkers and eGFR from baseline at T2, T3
Table (19):	Comparison between patients who received various types of anaesthesia as regard their serum level of cys C and NGAL at T2
Table (20):	Comparison between patients who received various types of anaesthesia as regard their serum level of cys C and NGAL at T3
Table (21):	Comparison between patients who underwent different cardiac catheterization procedures as regards their levels of serum cys C and NGAL at T280
Table (22):	Comparison between patients who underwent different cardiac catheterization procedures as regards their levels of serum cys C and NGAL at T3

Table (23):	Descriptive data of patients who developed AKI using different methods 82
Table (24):	Comparison between negative and positive AKI eGFR by Cys C based equation with demographic and anthropometric data
Table (25):	Comparison between negative and positive AKI eGFR by Cys C based equation with consanguinity and medications
Table (26):	Comparison between negative and positive AKI eGFR by Cys C based equation with echocardiographic diagnosis 86
Table (27):	Comparison between negative and positive AKI eGFR by Cys C based equation with types of cardiac catheterization.
Table (28):	Comparison between negative and positive AKI eGFR by Cys C based equation and the contrast used
Table (29):	Comparison between negative and positive AKI eGFR by Cys C based equation as regards types of anaesthesia
Table (30):	Comparison between negative and positive AKI eGFR by Cys C based equation with patients developed post-catheterization complications
Table (31):	Comparison between negative and positive AKI diagnosed using eGFR by Cys C based equation with AKI biomarkers and eGFR by Cys C based equation at (T2)

Table (32):	Comparison between negative and positive AKI patients diagnosed using eGFR by Cys C based equation with AKI biomarkers, eGFR by Cys C based equation and Schwartz equation at T391
Table (33):	Comparison between negative and positive AKI patients diagnosed using eGFR by Cys C based equation and percentage change of AKI biomarkers at T2.
Table (34):	Comparison between negative and positive AKI patients diagnosed using eGFR by Cys C based equation with the percentage change of AKI biomarkers at T3.
Table (35):	Comparison between negative and positive Cys C AKI patients as regards demographic and anthropometric data95
Table (36):	Comparison between negative and positive Cys C AKI patients as regards consanguinity and medications96
Table (37):	Comparison between negative and positive Cys C AKI patients as regards echocardiographic diagnosis97
Table (38):	Comparison between negative and positive Cys C AKI patients as regards the type of cardiac catheterization98
Table (39):	Comparison between negative and positive Cys C AKI patients and the contrast used

Table (40):	Comparison between negative and positive Cys C AKI patients as regards the type of anaesthetic used
Table (41):	Comparison between negative and positive Cys C AKI patients and post-catheterization complications
Table (42):	Comparison between negative and positive Cys C AKI patients as regards serum NGAL and eGFR by Cys C based equation at T2
Table (43):	Comparison between negative and positive Cys C AKI patients as regards serum NGAL, Creat and eGFR at T3 103
Table (44):	Correlation between serum levels of AKI biomarkers at T2 and the demographic, anthropometric data, contrast and eGFR by Cys C based equation of studied patients 105
Table (45):	Correlation between serum levels of AKI biomarkers at T3 and the demographic, anthropometric, contrast, serum creatinine, eGFR by Cys C based equation
Table (46):	ROC curve between (negative AKI and positive AKI) patients based on eGFR by Cystatin C equation at T3

List of Figures

Figure No	e. Title	Page No.
Figure (1):	Functional unit of kidney	4
Figure (2):	Factors influencing concentration endogenous eGFR markers	
Figure (3):	Summarizing factors affecting cysta production	
Figure (4):	The function of NGAL in iron transp	ort23
Figure (5):	Urinary NGAL as early biomark AKI than Scr.	
Figure (6):	The early rise of serum NGA comparison to late rise of creatining diagnosis of renal injury	ne for
Figure (7):	Structure contained in contrast benzene ring and (b) triiodinated ber ring.	nzene
Figure (8):	Pathophysiology of AKI after coadministration	
Figure (9):	Distributing of sex among the patients	
Figure (10):	Percentage of different medications u	used67
Figure (11):	Pie chart showing type of ca catheterization	
Figure (12):	Percentage of patients who rec different types of anaesthesia	
Figure (13):	Diagram showing rising of serum cy C from baseline till 24hrs	

Figure (14):	Diagram showing rising of serum NGAL from baseline till 24hrs	74
Figure (15):	Box-and-whisker plots of median levels of eGFR by Cys C at different timing (T1, T2, T3).	76
Figure (16):	Percentage of patients who developed AKI using different methods.	83
Figure (17):	Box-and-whisker plots of median values of eGFR by Cys C based equation at T3 in negative and positive AKI patients using eGFR Cys C based equation	92
Figure (18):	Box-and-whisker plots of median values of eGFR by Cys C based equation at T3 in negative and positive Cys C AKI patients.	104
Figure (19):	ROC curve between (negative AKI and positive AKI) regarding eGFR equation based on Cystatin C.	108

Introduction

The term Post-contrast acute kidney injury (PC-AKI) is used to describe a decrease in renal function that follows intravascular administration of contrast media. The decrease in renal function is usually mild, peaking at 2-3 days, and renal function usually returns to baseline values within 1-3 weeks. Like all forms of AKI, an episode of PC-AKI is a marker for increased short-and long-term morbidity and mortality and prolonged hospital stay (van der Molen et al., 2018).

Contrast media (CM) used in cardiac catheterization is low osmolar non-ionic contrast media (iohexol) has less effect on cardiac function and fewer side effects than conventional ionic contrast media, Contrast material dosing is based on a standardized dosing nomogram adjusted for patient weight (McDonald et al., 2018).

A new biomarker Cystatin C (CysC), a non-glycosylated low-molecular-weight (13 kDa) protein encoded by the CST3 gene, a protease inhibitor, that is synthesized and released into the blood at a relatively constant rate by all nucleated cells. It is freely filtered in normal circumstances by the glomeruli and completely reabsorbed in the proximal tubule. In the absence of tubular dysfunction, its serum levels reflect glomerular filtration, therefore it could be used as a convenient measure of glomerular filtration rate (Cecchi et al., 2017).

As blood levels of cystatin C are not significantly affected by age, sex, race, or muscle mass, it is a better predictor for glomerular function compared with serum creatinine (sCr) in patients with chronic kidney disease (Mostafa et al., 2016).

Cystatin C equation: (eGFR =70.69 x (CysC)^{-0.931}) for estimation of GFR may have advantages over serum Creatinine-based equations (**Schwartz et al., 2012**).

In children, the revised Schwartz formula to estimate GFR is recommended. eGFR (ml/min/1.73 m²) = $0.413 \times \text{height/sCr}$ (sCr in mg/dl, height in cm) (Schwartz et al., 2009)

Also one of the promising candidate biomarker for AKI is Neutrophil gelatinase-associated lipocalin (NGAL), a 25 kDa siderophore binding protein composed of 179 amino acids, a member of the lipocalin family, covalently attached to human neutrophil gelatinase, secreted by activated neutrophils. Lipocalins are proteins binding small lipophilic molecules and transporting them between the cells of the body. NGAL is involved in processes of cell-mediated immunity, bacteriostatic effects, cell proliferation, differentiation and apoptosis processes. It increases when there are conditions such as infection and malignancy (**Lichosik et al., 2015**).

In the kidney, NGAL is mainly expressed in the loop of Henle and distal convoluted tubules. It's filtered by the renal glomeruli and reversibly reabsorbed in the proximal convoluted tubules (Andreucci et al., 2016).