

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

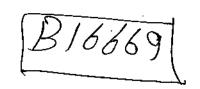

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية



شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

COMPARISON BETWEEN MODERN IRRIGATION SYSTEM DESIGNS

by

Kamal Hossny Amer

A Thesis

Submitted to the Graduate Division of the Menoufiya
University in Partial Fulfillment of the
Requirements for the Degree

of

Ph. D. in Agriculture Sciences

(Agriculture Engineering)

January 2001

Thesis Committee

Prof. S. M. Sharaf

Head of Agr. Eng. Dept.

Univ. of Menoufiya

Dr. M. A. Mohammed

Agr. Eng. Dept., Univ. of Menoufiya Prof. M. N. El-Awady

Agr. Eng. Dept..
Univ. of Ain Shams

Prof. I-Pai Wu

Biosystems Eng. Dept., Univ. of Hawaii Dr. M. H. Aboamera

Agr. Eng. Dept., Univ. of Menoufiya

La Machine

CANAL TANK

When the property of the second

of that it is

COMPARISON BETWEEN MODERN IRRIGATION SYSTEM DESIGNS

by

Kamal Hossny Amer

A Thesis

Submitted to the Graduate Division of the Menoufiya

University in Partial Fulfillment of the

Requirements for the Degree

of

Ph. D. in Agriculture Sciences

(Agricultural Engineering)

Approved by

January 11, 2001

M. M. 21 Ama

(Committee in charge)

Deposited in the Faculty Library

Date

/ 2001

A few sections of the section of the

The state of the s

en de la companya de la co

ា ក្រុម ក្រុម ប្រជាពល់ ប្រទេស ១៩៤១ ដែល១៩៤ ប្រធានការប្រ

ACKNOWLEDGMENT

Glory be to Allah, we have no knowledge except what you have taught us. Verily, it is you, the All-Knower, the All-Wise. Thanks to you for helping me achieving this work. Without your guidance, this work would have never been accomplished.

The author wishes to express his deepest gratitude and thanks to I-PAI WU Professor of Irrigation, University of Hawaii, Biosystems Engineering Dept. for inviting me and supervising my research work. Thanks for his kindness, cooperation and assistance.

Also it gives the author a great pleasure to express his deepest appreciation to DR. MOHAMMED EL-AWADY Professor of Agricultural Engineering, Ain Shams University, Faculty of Agriculture for suggesting the present research point. He sacrificed a great deal of his time in supervising, reviewing and corrections of the manuscript.

I cordially appreciate the effort of **DR. SAYED SHARAF**, Professor and head of Agriculture Engineering Dept., Faculty of Agriculture, Menoufiya University in facilitating all the steps of this research.

Sincere thanks are due to DR. MAMOUD ALI and DR. MOHAMMED ABO OMERA, Associate Professors of Agriculture Engineering, Menoufiya University, Faculty of Agriculture, for their kind help, co-operation and assistance.

I would like also to express my deep thanks to my family for their support and encouragement.

() 1 · () () () () ()

Marian F 277 AST MARCH Charles Walter 416 - -**12**() 25 g. .

Gorgens and Artist

.

A STANCE OF THE ા કાર્યકાનું જ્લા હતી હતા. જિલ્લામાં આવેલા છે. જો જો જો

are a to britten and a supplied of a supplie

ABSTRACT

Comparison between Modern Irrigation System Designs

Weather elements play an important role in plant life. They were measured to estimate evapotranspiration. The Penman model was used to determine potential ET in this research project due to the variety of field weather elements involved as well as recommendations made by many researchers. The average potential ET was considered to be as 3 and 2 mm of water per day for winter and 4 and 5.5 mm of water per day for summer in Kula, Maui, Hawaii and Shibin El-kom, Egypt, respectively.

The irrigation experiments were conducted in Kula, Maui, Hawaii and Shibin El Kom, Egypt. A drip irrigation system with ten different amounts of water treatments was designed and installed to disperse water throughout onion and cabbage fields. The amount of water use ranged from 0.2ET to 2.0ET. Water applied, ET_m, corresponding to the maximum yield, Y_m, was measured as the maximum amount of crop evapotranspiration, ET_c. These confirmed the crop ET. The results of irrigation experiments that were collected showed that the yield reduction occurred by both deficit and over-irrigation. This crop response was defined by model II. For the case when the yield was not changed by first portion over-irrigation (the top point was extended to a horizontal line for a while), the response curve can be considered as response model III. The shape of the crop response curve is a function of the given crop.

The uniformity coefficient as well as the coefficient of variation can be used for both sprinkler and drip irrigation systems. When the system is designed for high uniformity (UC \geq 70%) the water distribution can be expressed as a normal distribution. Furthermore, it can be simplified to a straight line of water distribution

and the required evapotranspiration will show the deficit and over irrigation in the field by sprinkler and drip irrigation. The total yield production can be determined based on the crop response models that mathematically were developed. The deficit/over irrigation conditions can also be created in furrow irrigation by comparing the infiltrated water depth by irrigation and required ET. The yield under furrow irrigation can be evaluated based on the crop response with respect to deficit and over-irrigation. Optimum irrigation solutions based on maximum yield or maximum return can be found. Water-use-efficiency and application efficiency was also used to compare and evaluate irrigation systems.

The computer simulations for drip and sprinkler irrigation systems 0.1, 0.2, and 0.3 coefficient of variation were run for crop production and return. Production yield and total return for the crop response model II were compared to these by furrow irrigation. In general, linear relationship shows the correlation between the crop yield as well as return yield versus water use for either 100% deficit or 100% over-water applications. A quadratic relationship which describes underirrigation includes both deficit and over-water applications.

Comparison between sprinkler and drip irrigation systems represented in uniformity coefficient showed that drip system that designed over 90% uniformity coefficient while sprinkler over 70%. The best scheduling for saving water and giving high return yield was in the system with high uniformity. Comparison between drip and furrow irrigation systems showed that saving water and giving high return yield was under dripping than furrows because wasting water by runoff in furrow. Mathematical models for crop response II and III were developed for best scheduling and evaluating modern irrigation systems. Mathematical model for crop response II was applied for best scheduling and evaluating furrow irrigation by using modern techniques.

()

CONTENTS

ACKNOWLEDGMENT)	ii
ABSTRACT		iv
LIST OF TABLES	·	v
LIST OF FIGURES		vi
CHAPTER 1: INTRODUCTION		1
CHAPTER 2: REVIEW OF LITERATURE		4
2.1 Methods of Applying Irrigation Water		4
2.2 Modern techniques of furrow irrigation		.4
2.3 Definition, classification, and components of sprinkler irrigation	n	7
2.3.1 Set sprinkler systems		18
2.3.2 Continuous-move sprinkle systems		8
2.3.3 Sprinkler system components		9
2.3.4 Pump and power unit	•	. 9
2.3.5 Mainline	100	9
2.3.6 Laterals		10
2.3.7 Sprinkler heads		10
2.4 Definition, classification and components of microirrigation		12
2.4.1 Components of microirrigation		13
2.4.2 Microirrigation system hydraulic design		14
2.4.2.1 Hydraulics of emitters		14
2.4.2.2 Hydraulics of laterals		1:

2.5 Irrigation efficiency	17
2.5.1 Furrow irrigation efficiency	17
2.5.1.2 Application efficiency	17
2.5.1.2 Uniformity coefficient	18
2.5.2 Sprinkler irrigation system efficiency	18
2.5.2.2 Uniformity coefficient	20
2.5.3 Microirrigation system efficiencies	20
2.5.3.1 Application efficiency	21
2.5.3.2 Uniformity coefficient	22
2.6 Irrigation requirement	23
2.6.1 Evapotranspiration (ET) determination	23
2.6.1.1 Original Penman combination equation	24
2.6.1.2 Penman model	25
2.5.1.3 Penman-Monteith model	29
2.6.1.4 FAO-Penman model	31
2.6.1.5 Pristley-Taylor model	32
2.6.1.6 The Hargreaves model	32
2.6.1.7 Jensen -Haise model	33
2.6.1.8 Kohler model	34
2.6.1.9 Thornthwaite's method	34
2.6.1.10 Blany-Criddle method	35
2.6.2 Irrigation scheduling	36
2.6.2.1 Water applied per irrigation	38
2.6.2.2 Irrigation scheduling techniques	39
2.5.2.3 Irrigation scheduling model	40
2.7 Water-production function	42
2.8 Frequency of irrigation	43
2.9 Comparison of irrigation methods for crops	44
2.9.1 Crop yield	45
2.9.2 Water use efficiency	46
2.9.3 Saving water	47