

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

Studies On Exposure to Some Radioactive Isotopes In Air

B17489

A Thesis Submitted for Doctor of Philosophy in Science

To
The Physics Department
Faculty of Science
El-Minia University

By
Taha Mohamed Taha Ahmed
Assistant lecturer- Radiation Protection Department, A.E.A
B.Sc.(1990), M.Sc (Medical Biophysics) 1997, Cairo University

Supervisors

Prof.Dr.A.A.Ahmed Dr. A.El-Hussein Prof.Dr. M.A.M.Gomaa Dr. Eid M.Ali

<u>ACKNOLED</u>GEMENT

The prayful thanks, first of all to our merciful Allah who guides me through his light

The author wishes to express his deep gratitude to **Head of Physics department**, Faculty of Science, El-Minia University, for his helpness and encouragement throughout this work

The author wishes to express his deep gratitude to **Dean of Faculty of science**, El-Minia University for his professional advice and encouragement throughout this work.

The author wishes to express his deep gratitude to **Prof.Dr.A.A.Ahmed**, Physics department, Faculty of Science, El-Minia University for providing the research facilities and suggesting the principles on which this study is based.

The author wishes to express his deep sense of gratitude and honour to **Prof.Dr.M.A.M.Gomaa**, Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority for his guidance and encouragement throughout this work.

The author wishes to express his deep gratitude to **Dr.A.M.El-Hussein**, Physics department, Faculty of Science, El-Minia University for his helpful discussions and valuable suggestions throughout this work.

The author wishes to express his deep gratitude to Dr.E.M.Ali, Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority for his guidance and encouragement throughout this work.

The author wishes to express his deep gratitude to **Head of Radiation Protection Department**, Nuclear Research Center, Atomic Energy Authority for his helpness and encouragement throughout this work.

A special word of thanks is extended to my parents for their generous support during my graduate education.

To my wife, I express love and gratitude for her understanding and enthusiasm.

Contents

		Page No.
Summa	•	1
Chapte	•	
	nez General Introduction:	1
-	are to Radioactive Radionuclides i Air	1
	Introduction	1
	Environmental Radioactivity	3
	Indoor radon exposure	5
	Radiation quantities and units	8
	The Becquerel	8
	The Curie	8
1.1.3.3	Specific Activity	8
1.1.3.4	a Organ Dose and Absorbed Dose	9
1.1.3.4	o Air Kerma	9
1.1.3.5	Equivalent Dose	10
1.1.3.6	Effective Dosc	11
1.1.4	Dose Limit	12
1.1.5	Annual Doses from Natural Sources	13
Part Ty	wo: Exposure Routes	14
1.2	Introduction	14
1.2.1	Radiation detectors	16
1.2.1.1	Introduction	16
1.2.1.2	Gas-Filled Detectors	17
1.2.1.3	Scintillators	18
1.2.1.4	Semiconductor Detectors	18
1.2.2	Passive Detectors	19
1.2.2.1	Theory of thermolumincence trap center formation	19
1.2.2.2	Literature Review for using Thermoluminescence materials i	R
	general and carbon-doped aluminum oxide in environmental	
	monitoring.	21
1.2.3	Radon Emanation from sol and dwelling	27
1.2.4	Activity size distribution of the aerosol	31
1.2.5	Detection of internal exposures	32
1.2.5.1	Literature review for environmental monitoring of radon	
	and radon decay products	36
1.2.6	Human Respiratory Tract Model	39
1.2.6.1	General introduction	39
1.2.6.2	Routes of Intake, Transfer and Excretion	40
1.2.6.3	Human Respiratory Tract Morphometry and Physiology	40
1.2.6.4	Specification of Filtration Efficiencies	44
1.2.6.5	Routes of clearance of a particles from the respiratory tract	4 4
1266	Respiratory Tract Dosimetry	50

1.2.7	Aim of the work	53
Chanter	· (2): Experimental Tools and Techniques	
2.1	General Introduction	54
2.2	Part one: External exposure	54
2.2.1	Sources of external exposures	54
2.2.1.1	Gamma ray irradiation and calibration facility	55
2.2.1.2	Ionization chamber	55
2.2.1.3	Gamma ray spectrometer	58
2.2.1.4	· ·	59
	TL material	59
	TL read out unit	59
2.2.14.2		59
2.2.3	Experimental set-up for environmental exposure measurements	
2.4.3	With TLD	62
2.2.4	Response of TLD to Cs-137 gamma rays	64
2.3	Part two: Internal dosimetry	71
2.3.1	Radiation Sources	71
2.3.2	Continuous radon measurement system	71
2.3.3	Alpha spectrometer for measurement of the short-lived radon	
2.0.0	decay products	72
2.3.3.1	Measurements Procedure	74
2.3.3.2	Calibration of Alpha Spectrometer	75
2.3.3.3	Procedure of measuring of the short-lived radon decay	
2.3.3.3	Products	75
2.3.3.4	The evaluation of the measured data	76
2.3.4	Procedure of measuring activity size distribution of Pb-214	
,·	by Cascade Impactor and high pure germanium spectrometer	80
2.3.4.1	Cascade Impactor Principle	80
2.3.4.2	Low level high pure germanium spectrometer	82
2.4.4.3	Procedure of measuring activity and data evaluation	82
2,3,4,4	Determination of the activity size distribution of ²¹⁴ Pb	86
2.3.5	Dose Calculation	87
Chapter	(3). Results and Discussions	
T 4 44		88
Introduct	: External exposure: Indoor and outdoor environmental	
rart one		88
2 1	Gamma ray Physical parameters affecting response of TLD carbonized	
3.1	Aluminum oxide dosimeters	88
2 1 1	• • • • • • • • • • • • • • • • • • • •	88
3,1,1	Dose recovery and reproducibility Linearity of TLD-500 dosimeters	89
3.1.2	The lower limit of detection, LLD using TLD-500 dosimeters	91
3.1.3	The lower main of deaction, the damp The 500 deatherers	

3.1.4	Energy response Calculation	93
3.1.5	Environmental monitoring of some selected areas using	
01170	Carbonized Aluminum Oxide (TLD dosimeters)	94
3.2 Par	t two: Internal exposure	102
3.2.1	Measurement of indoor radon gas concentration by using	
	Continuous Radon Measurement System at some normal and	
	Enhanced background locations of El-Minia University and	
	Inshass	102
3.2.1.1	Natural background locations	103
3.2.1.2	Enhanced background locations	103
3.3	Activity concentration of short-lived radon progeny at El-	
	Minia University by using alpha spectrum	118
3.4	Measuring of the activity size distribution of Pb-214	119
Chapte	r (4): Dose estimation and risk estimates	
4.1	Quantities and units in use for Radon Dose Calculation	125
4.1.1	.Working Level (WL)	125
4.1.2	Equilibrium Factor	125
4.1.3	Occupancy and Dose Factor	126
4.2	Radon dose calculation	127
4.3	Intake of radon equivalent equilibrium concentration	129
4.4	Deposition of an aerosol in each five regions of respiratory	
	tract	130
4.5	Effective Dose Calculation	150
4.5.1	Calculation of the weighted equivalent dose Hw to lung	
	from the inhalation of radon progeny for an exposure given	
	in terms of Bqhm ⁻³	150
4.5.2	Organ dose due to radon gas exposure	151
4.5.3	Computation of Po-218 effective dose for five regions	
	of human respiratory tract.	151
4.5.4	Pb-214 Organ doses	158
4.5.5	Total effective doses due to gamma exposure and radon	158
4.6	Risk assessment	160
4.6.1	Risk assessment due to Radon and Radon Daughters	
	exposures	160
Conclusi -	•	164 168
	Recommendation	
	REFERENCES	
List of T		I
List of F	igures .	IV

ż

List of Tables

Table No	Description	Pag No
1.1	Radiation weighting factor	10
1.2	Tissue weighting factor for different tissues and organs	12
1.3	ICRP Recommendation Dose Limits	13
1.4	Annual doses from natural sources	14
1.5	Data and building materials for the radon and thoron exhalation	29
1.6	Ventilation parameters for reference subjects	41
1.7	Default absorption rates for type F, M and S materials	52
1.8	Masses of target tissues in the respiratory tract in different subjects	52
1.9	Target tissues of the respiratory tract	52
2.1- 2.6	Response of Carbonized aluminum oxide, TLD to Cs-	65-
	137 rays and dose conversion factors (DCFs), at different	69
	distances 0.3, 0.5, 1.0, 2.0, 3.0, 4.0 m respectively	
	SDD=0.3 meter from the source	

Table No	Description	Pa; No
2.7	Mean of the mean of all responses of Carbonized	70
	aluminum oxide, TLD to Cs-137 rays, at several doses	
	and dose conversion factors (DCFs) at different distances	
	using Cs-137 irradiator.	
2.8	Calibration Sources for alpha and gamma energies	71
3.1	The accuracy of Carbonized aluminum oxide, Al ₂ O ₃ -C	92
3.2	Background of unimadiated Carbonized Al ₂ O ₃ -C	92
3.3	Energy Response ratio between TLD-500 and TLD-100	93
	with different gamma energies	
3.4	Indoor TLD-500 accumulated dose inside a shielded	95
	room,(WBC)	
3.5	Accumulated Indoor Air Kerma in Inshass region and El-	96
	Minia University for 70 days	
3.6	Accumulated Outdoor Air Kerma of Inshass Region for	97
	70 days	
3.7	Accumulated Outdoor Air Kenna of El-Minia University	97
	for 70 days	
3.8	Indoor and Outdoor absorbed dose in air and estimated	98
	annual dose	
3.9	External exposure rates from terrestrial gamma radiation	99

;**-**

Table No	Description	Pag No
3.10	Indoor and Outdoor Effective dose received by adults in some selected locations	100
3.11	Diurnal variation of 240 samples of indoor radon gas concentration at El-Minia University of summer season of 2003	104
3.12	Diurnal variation of 240 samples of indoor radon gas concentration at Radiation Protection Department at Inshass of summer season of 1999	105
3.13	Diurnal variation of 240 samples of indoor radon gas concentration at Physics Department at Inshass for summer season of 1999	105
3.14	Diurnal variation of 240 samples of indoor radon gas concentration at Decontaminated area by radium needles for summer season of 2003.	106
3.15	Diurnal variation of 240 samples of indoor radon gas concentration at Nuclear Fuel Laboratories at Inshass for winter season of 1999.	106
3.16	Equilibrium Equivalent concentration (EEC) of radon	107

Table No	Description	Pag No
3.17	Short Lived radon decay daughter concentrations at	120
	summer season.	
3.18	Activity Median Aerodynamic Diameter, AMAD,	122
	geometric standard deviation and specific concentration	
	measured indoor a room of physics department of faculty	
	of science of El-Minia University with Berner cascade	
	impactor	
4.1	Indoor Effective dose at selected five locations at El-	128
	Minia University and Inshass	
4.2	Deposition % of each of the five regions of the	137
	respiratory tract for polydisperse aerosol and nose	
	breather with different activities	
4.3	Deposition % of each of the five regions of the	137
	respiratory tract for polydisperse acrosol and mouth	
	breather with different activities	
4.4	Deposition % of each of the five regions of the	140
	respiratory tract for monodisperse aerosol and nose	
	breather with different activities	
4.5	Deposition % of each of the five regions of the	140
	respiratory tract for monodisperse aerosol and mouth	
	breather with different activities	
4.6	Indicates the relationship between AMAD(s) and deposition of the five region of the respiratory tract system.	14 l

3

Table No	Description	Page No
4.7	Indicates the relationship between AMAD(s) and	141
	Deposition % of an aerosol at Exthoracic region	
4.8	Indicates the JCRP-30 and ICRP-66 lung deposition models for a polydisperse aeroso.	142
4.9	Deposition fractions of Monodisperse aerosol and light	144
	exercise in a wide particle size range (0.001-50 um)	
4.10	Average weighted dose equivalent for the five locations	1.51
4.11	Annual Rn-222 organ effective doses for Gonads, Breast,	152
	Lung, Red Marrow, Bone Surface, Thyroid and the	
	Remainder for workers indoor one room of physics dept.	
	Faculty of Science-El-Minia University.	
4.12	Annual Rn-222 organ effective doses for Gonads, Breast,	153
	Lung, Red Marrow, Bone Surface, Thyroid and the	
	Remainder for workers indoor of decontaminated radium	
	needles at Inshass.	
4.13	Annual Rn-222 organ effective doses for Gonads, Breast,	154
	Lung, Red Marrow, Bone Surface, Thyroid and the	
	Remainder for workers indoor of radiation protection	
	department at Inshass.	

:

Professional Control of the Control

: 4 5