

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

MECHANICAL PROPERTIES OF SYNTHESIZED SLAG BASED GEOPOLYMER CONCRETE

By

Khaled Moustafa Hussien Shibl

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

MECHANICAL PROPERTIES OF SYNTHESIZED SLAG BASED GEOPOLYMER CONCRETE

By

Khaled Moustafa Hussien Shibl

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Prof. Dr. Osama Abdelghafour Hodhod

Professor of Properties and Strength of Materials Structural Engineering Department Faculty of Engineering, Cairo University

MECHANICAL PROPERTIES OF SYNTHESIZED SLAG BASED GEOPOLYMER CONCRETE

By

Khaled Moustafa Hussien Shibl

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Structural Engineering

Approved by the
Examining Committee

Prof. Dr. Osama Abdelghafour Hodhod (Thesis Main Advisor)
Professor of Properties and Strength of Materials – Faculty of Engineering
– Cairo University

Prof. Dr. Ahmed Mahmoud Maher Ragab (Internal Examiner)
Professor of Properties and Strength of Materials – Faculty of Engineering
– Cairo University

Prof. Dr. Mohamed Osama Ramadan (External Examiner)
Professor of Properties and Strength of Materials – Shoubra Faculty of
Engineering – Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 Engineer's Name: Khaled Moustafa Hussien Shibl

Date of Birth: 16/06/1992

Nationality: Egyptian

E-mail: K.moustafa.2014@gmail.com

Phone: 002-0100-228-2512

Address: No. 03, Ibn nofal St., 6th of October, Egypt.

Registration Date:01/03/2017Awarding Date:..../..../2022Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Osama Abdelghafour Hodhod

Examiners:

Prof. Dr. Osama Abdelghafour Hodhod (Thesis main advisor) Prof. Dr. Ahmed Mahmoud Ragab (Internal examiner)

Prof. Dr. Mohamed Osama Ramadan (External examiner) Professor of Properties and Strength of Materials – Shoubra

Faculty of Engineering – Benha University

Title of Thesis:

Mechanical properties of synthesized slag based Geopolymer concrete

Key Words:

Slag; Silica fume; Fly ash; Geopolymer concrete; Mechanical properties

Summary:

Mechanical properties of slag based geopolymer concrete has been studied with partial replacement of ground granulated blast furnace slag with silica fume, fly ash, and metakaolin. Compressive strength was studied at the ages of 7,28, and 90 days while splitting, flexural, and bond strength between reinforcement bars and concrete were studied at the age of 28 days. Different replacement percentages of silica fume, fly ash and metakaolin were used instead of slag for 15 concrete mixes with addition to two more concrete mixes with cement and the other is a mixture of cement and slag for comparing purposes. Results revealed that using ground granulated blast furnace slag as a base material gave the highest compressive and indirect tension strength at all ages. However, partial slag replacement with fly ash and metakaolin showed more bond and flexural strengths compared to mixes with no replacement percentages.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Khaled Moustafa Hussien	Date:	/	/ 2022
Signature:			

Dedication

To my Mother & father,

The reason of what I became today,

Thank you for your love, support and care.

Thank you for always considering education a priority.

To my grandfather's soul who has always believed in me, pushed me and motivated me.

To my great professor,
Dr. Osama Hodhod
Thank you for taking the lead
in a very tight time
Thank you for your unlimited support
and care.

To my great professor,
Dr. Mohamed Ismail Serag
who has always been a role model
besides being a tutor
Thank you for your unlimited support
in all fields of life.

Acknowledgments

First and above of all, All praises to Allah, Who has been always standing by my side and blessed me with power, strength and dedication to be able to proceed in this important step of my life.

Special thanks for **Dr. Osama Hodhod** who has been supporting me to the end and offering time and advice during the whole process. Thank you for your pateince and valuable time. You've been always a role model and guidance to me during the undergraduate studies.

I'd like to thank from the bottom of my heart **Dr. Mohamed Ismail Serag** for being such an amazing professor and giving me the needed support and motivation to complete this thesis. Thank you for providing the most marvelous atmosphere for working, thank you for creating that healthy environment where any and every student would seek to innovate. You'll always and forever be appreciated.

I'd like also to thank **Dr. Mohamed Karam hussien** for guiding me to the right path at the very beginning of this journey, thank you for always offering help and exerting invaluable efforts to push and accelerate me to finish this study. Thanks to **Eng. Sara Ibrahim** for her support through this study

Great thanks to **Shoura mohamed** and **Areeg El hadad** for always being a guide and reference for every single detail in this process.

I'd like to thank Eng. Mohamed Hamdy, Hossam Seif-Eldin, Mohab Ayman, Salma Ahmed and Passant Youssef for offering information, support, and help during every time.

I'd like also to thank the great technician **Abdelrazik El-araby** for working with me during the experimental work.

Thank you my family, my friends and relatives for always believing in me, thank you for being so proud of me, this has been always an ignition to make all your heads up.

TABLE OF CONTENTS

DISCLAIMER	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
NOMENCLATURE	xvii
ABSTRACT	xviii
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Research Objectives	2
1.3. Scope of Work	2
1.4. Thesis Layout	3
1.4.1. Chapter 1: Introduction	3
1.4.2. Chapter 2: Background and literature review	3
1.4.3. Chapter 3: Experimental program	3
1.4.4. Chapter 4: Results and discussion	3
1.4.5. Chapter 5: Summary, conclusions, and recommendations	3
CHAPTER 2: BACKGROUND & LITERATURE REVIEW	4
2.1. General	4
2.1.1. Problem	4
2.1.2. Historical background	5
2.2. Geopolymerization	5
2.2.1. Models of Alkali Activation	5
2.2.2. Chemistry and mechanism	7
2.3. Parameters affecting geopolymer concrete	8
2.3.1. Role of Source Material	8
2.3.1.1. Geopolymer concrete mixes with FA	8
2.3.1.2. Geopolymer concrete mixes with GGBFS	19
2.3.1.3. Geopolymer concrete mixes with FA and GGBFS	21

	2.3.1.4. Geopolymer concrete mixes with FA and SF	. 28
	2.3.1.5. Partial cement replacement by FA, SF, and GGBFS	. 31
	2.3.2.Sodium hydroxide molarity	36
	2.3.3. Bond strength	40
	2.3.4. Effect of curing on GPC mechanical properties	. 43
	2.3.5. Effect of binder content and w/b ratio on compressive strength	46
C	HAPTER 3: EXPERMENTAL PROGRAM	. 49
	3.1. Introduction	49
	3.2. Experimental program	. 50
	3.2.1. Overview of experimental program	. 50
	3.2.2. Characterization of used materials	. 51
	3.2.2.1. Sodium hydroxide (NaOH)	. 51
	3.2.2.2. Sodium silicate (Na ₂ SiO ₃)	52
	3.2.2.3. Water	. 52
	3.2.2.4. Superplasticizer	. 53
	3.2.2.5. Ground granulated blast furnace slag (GGBFS)	53
	3.2.2.6. Cement	. 55
	3.2.2.7. Fly Ash (FA)	55
	3.2.2.8. Silica fume (SF)	. 56
	3.2.2.9. Metakaolin	. 57
	3.2.2.10. Sand	58
	3.2.2.11. Coarse aggregate	. 59
	3.2.3 Samples Preparation	
	3.2.3.1. Overview of samples preparation	60
	3.2.3.2. Mixing procedure	. 61
	3.2.3.3. Mix design	62
	3.2.4. Testing	64
	3.2.4.1. Compressive strength test	. 64
	3.2.4.2. Splitting tensile strength test	65
	3.2.4.3. Flexural strength test	. 66
	3.2.4.4. Bond strength test	. 67

CHAPTER 4: RESULTS AND DISCUSSION	70
4.1. Introduction	70
4.2. Mechanical properties of geopolymer concrete	70
4.2.1. Compressive strength	70
4.2.1.1. Effect of coarse-to-fine aggregate ratio (C/F)	71
4.2.1.2. Effect of presence of FA as a partial replacement of GGBFS	72
4.2.1.3. Effect of presence of SF as a partial replacement of GGBFS	74
4.2.1.4. Effect of presence of MK as a partial replacement of GGBFS	76
4.2.1.5. Effect of partial cement replacement with GGBFS	78
4.2.1.6. Effect of alkali activator content in MK based GPC	80
4.2.1.7. Effect of water curing	82
4.2.1.8. Effect of source material	84
4.2.2. Indirect tensile strength	86
4.2.2.1. The effect of coarse to fine aggregate ratio (C/F)	86
4.2.2.2. Effect of presence of FA as a partial replacement of GGBFS	87
4.2.2.3. Effect of presence of SF as a partial replacement of GGBFS	88
4.2.2.4. Effect of presence of MK as a partial replacement of GGBFS	88
4.2.2.5. Effect of partial cement replacement with GGBFS	89
4.2.2.6. Effect of alkali activator content in MK based GPC	90
4.2.2.7. Effect of water curing	91
4.2.2.8. Effect of source material	91
4.2.3. Bond strength	92
4.2.3.1. The effect of coarse to fine aggregate ratio (C/F)	92
4.2.3.2. Effect of presence of FA as a partial replacement of GGBFS	93
4.2.3.3. Effect of presence of SF as a partial replacement of GGBFS	94
4.2.3.4. Effect of presence of MK as a partial replacement of GGBFS	95
4.2.3.5. Effect of partial cement replacement with GGBFS	96
4.2.3.6. Effect of alkali activator content in MK based GPC	96
4.2.3.7. Effect of water curing	97
4.2.3.8. Effect of source material	98
4.2.4. Flexural strength	98
4.2.4.1. The effect of coarse to fine aggregate ratio (C/F)	99
4.2.4.2. Effect of presence of FA as a partial replacement of GGBFS	99

	4.2.4.3. Effect of presence of SF as a partial replacement of GGBFS	100
	4.2.4.4. Effect of presence of MK as a partial replacement of GGBFS	.101
	4.2.4.5. Effect of partial cement replacement with GGBFS	. 102
	4.2.4.6. Effect of alkali activator content in MK based GPC	102
	4.2.4.7. Effect of water curing.	103
	4.2.4.8. Effect of source material	.104
CH.	APTER 5: SUMMARY, CONCULUSION, AND RECOMMENDATION	105
	5.1. Summary	. 105
	5.2. Conclusions	106
	5.2. Conclusions	.100
	5.3. Recommendations	

LIST OF TABLES

Table 3.1: Chemical composition of sodium hydroxide	51
Table 3.2: Chemical composition of sodium silicate	52
Table 3.3: Chemical and physical characteristics of superplasticizer	53
Table 3.4: Chemical composition of GGBFS	54
Table 3.5: Physical composition of GGBFS	54
Table 3.6: Chemical properties of ordinary Portland cement type I	55
Table 3.7: Chemical composition of fly ash	55
Table 3.8: Chemical composition of silica fume	56
Table 3.9: Chemical composition of metakaolin	57
Table 3.10: Fine aggregate sieve analysis	58
Table 3.11: Physical properties of fine aggregate	59
Table 3.12: Final quantities of mix design in kg/m ³	64

LIST OF FIGURES

Figure 2.1: Past, current and future estimate of the amount of the world cement	
production.	. 4
Figure 2.2: A schematic diagram for alkali-activated system components	. 5
Figure 2.3: Chemical structures of polysialates	7
Figure 2.4: Effect of sodium silicate to sodium hydroxide ratio on compressive strength	9
Figure 2.5: Effect of the ratio of alkaline liquid to fly ash on compressive strength	9
Figure 2.6: Effect of curing time on compressive strength	10
Figure 2.7: Effect of percentage of superplasticizer on compressive strength	10
Figure 2.8: Effect of water to binder ratio on compressive strength	. 10
Figure 2.9: Effect of w/b ratio on the compressive strength	11
Figure 2.10: Effect of curing temperature on compressive strength	12
Figure 2.11: Effect of curing time on compressive strength	12
Figure 2.12: Effect of percentage of superplasticizer on compressive strength	13
Figure 2.13: Effect of water/geopolymer solids on compressive strength	13
Figure 2.14: Effect of additional water content on compressive strength	14
Figure 2.15: Effect of additional water content on tensile strength	15
Figure 2.16: Effect of chemical admixture content on compressive strength	15
Figure 2.17: Effect of chemical admixture content on tensile strength	.15
Figure 2.18: Effect of NaOH molarity on compressive strength	16
Figure 2.19: Effect of NaOH molarity on tensile strength	16