

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

TOWARDS DEVELOPING A DESIGN APPROACH FOR OPTIMIZING ENERGY PERFORMANCE IN BUILDINGS

By

Azza Saeed Abd El-Hay Wahba

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Architectural Engineering

TOWARDS DEVELOPING A DESIGN APPROACH FOR OPTIMIZING ENERGY PERFORMANCE IN BUILDINGS

By

Azza Saeed Abd El-Hay Wahba

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Architectural Engineering

Under the Supervision of

Prof. Dr. Medhat M. El-Shazly	Prof. Dr. Yasser. M. El-Sherbiny

Professor of Architectural Engineering Department of Architectural Engineering Faculty of Engineering, Cairo University

Professor of Architectural Engineering Department of Civil and Arch. Engineering Division of Engineering research, NRC

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

TOWARDS DEVELOPING A DESIGN APPROACH FOR OPTIMIZING ENERGY PERFORMANCE IN BUILDINGS

By Azza Saeed Abd El-Hay Wahba

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Architectural Engineering

Approved by the Examining Committee

Prof. Dr. Medhat M. Abd El-Meguid El-Shazly, Thesis Main Advisor

Prof. Dr. Yasser Mahmoud Gharib El-Sherbiny, Advisor Professor of Architectural Engineering, Dept. of Civil and Arch. Engineering, NRC

Prof. Dr. Hisham Sameh Hussien Sameh Internal Examiner

Prof. Dr. Mohamed Mostafa ElHamshary External Examiner Professor of History and Theories of Architecture & Dean of October High Institute for Engineering and Technology, 6th of October City

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT Year 2021

Engineer's Name: Azza Saeed A.Hay Wahaba

Date of Birth: 02/01/1979 **Nationality:** Egyptian

E-mail: azza_arch@yahoo.com

Phone: 01222344596

Address:

Registration 01/10/2015

Date:

Awarding Date:/2022

Degree: Doctor of Philosophy **Department:** Architectural Engineering

Supervisors:

Prof. Dr. Medhat Mohammed Abd El-Meguid El-Shazly

Prof. Dr. Yasser Mahmoud Gharib El-Sherbiny

Examiners:

Prof. Dr. Medhat Mohamed Abdel Meguid El-Shazly, (Thesis main advisor)

Prof. Dr. Yasser Mahmoud Gharib El-Sherbiny, (Advisor)

Dept. of Civil & Arch. Engineering, NRC

Prof. Dr. Hisham Sameh Hussein Sameh (Internal examiner)
Prof. Dr. Mohamed Mostafa ElHamshary (External examiner)
Professor of History and Theories of Architecture Dean of October High Institute

for Engineering and Technology, 6th of October City.

Title of Thesis:

Towards developing a design approach for optimizing energy performance in buildings (Effects of Roof Shapes and New Treated Materials on EM Energy Levels).

Key Words: (must be 5 words only)

Building Energy Simulation, Architectural Design Parameters, New Treated Building Materials, Multilayered Wall, Electromagnetic Energy Indoors.

Summary:

The research presents a scientific approach for analysis of EMR levels indoors. A MATLAB program was created to evaluate the transmission, absorption and reflection through a model five-layered wall. Curves illustrating the effect of brick size on transmission and reflection were constructed. The effect of replacing regular cement in the wall render layers with four types of new treated cement mixtures was first investigated on the model wall. The EM environment of a square room with the model five-layered walls was evaluated. CST-MWS software was adapted to simulate EMR behavior within the model room with high precision. Five roof shapes were analyzed and compared. The effects of openings, height change, and orientation on EMPD were analyzed. The full pictures of the EMR distribution patterns were presented by taking sections along the lengths and widths of the studied buildings, constructing EMR density curves at different heights, as well as evaluating EMP intensities at four selected points within the utilized regions of the studied buildings. An optimization for the wall layers thickness was achieved through extensive simulation.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Azza S. Wahba Date: 5/8/2021

Signature:

Dedication

You may include this section if you wish to dedicate your thesis to someone.

Acknowledgments

First of all and foremost, the unlimited thanks to "Allah" (A.J) for helping me to fulfill this work.

I would like to express my sincere thanks, deep gratitude and appreciation to *Prof. Dr. Medhat El-Shazly*, Professor of Architectural Engineering, Dept. of Architectural Engineering, Cairo University, for his guidance, patience, valuable criticism, kind encouragement and supervision, during the course of this research.

I would also like to express my thanks and gratitude to *Prof. Dr. Yasser El-Sherbiny*, Dept. of Civil and Architectural Engineering, NRC, for his cooperation, encouragement and great assistance during the supervision on this work.

I would highly acknowledge and appreciate the kind cooperation and assistance of *Dr. Ayman El-Boushy*, Electronic Research Institute, his valuable guidance in the field of electromagnetics, and for facilitating the access to labs, measurement devices, with which this work could be fulfilled.

My great thanks and gratitude are extended to my parents and family for their continuous help and unlimited support during my entire life. I also should introduce many thanks to my department seniors and colleagues for their good feelings and support during the past years.

At last, I should acknowledge the authorities of the National Research Center for introducing the facilities and support to accomplish this thesis.

Table of Contents

DISCLAIM	IER	VI
DEDICATI	ION	VII
	LEDGMENTS	
TABLE OF	CONTENTS	IX
LIST OF T	ABLES	XII
LIST OF F	IGURES	XIII
NOMENCI	LATURE	XIV
ABSTRAC	Т	XV
CHAPTER	1: INTRODUCTION AND BACKGROUND	1
1.1. OVE	rview 1	
1.2	Introduction 1	
1.2.1.	Sensing the problem:	1
1.2.2	Research Questions	
1.2.3.	Research Hypothesis	2
1.2.4.	Research Objectives	2
1.2.5.	Research Scope	2
1.2.6.	The Thesis Outline: 3	
1.3. Theo	retical BACKGROUND ERROR! BOOKMARK NOT DEFIN	ED.
1.3.1.	The Harmful Effects of EMR	4
1.3.2.	Electromagnetic interference	4
1.3.3.	Biological Effects of Electromagnetic Energy	4
1.3.4.	RFR Regulations	4
1.3.4.1	1	
1.4. EM	Propagation	5
1.4.1.	The EM Spectrum	5
1.4.2.	Microwave Bands	7
1.4.3.	EM Waves	7
CHAPTER	2:THE EM CHARACTERISTICS OF BUILDING M	IATERIALS9
2.1. OVE	RVIEW.	9
2.2. IMPC	ORTANT DEFINITIONS	9
2.2.1.	The Electric Field in Conducting Materials	9
2.2.2.	The Dielectric Materials	9
2.2.3.	The Electric Field in Dielectric Materials	9
2.2.4.	Lossy Dielectric Materials	9
2.2.5.	Magnetic Field In Magnetic Materials	10

2.2	.6. The Interaction of EM Waves with Materials	10
2.3.	EM CHARACTERISTICS OF COMMON BUILDING MATERIALS 1	2
2.3	1. Wood:	12
2.3	2. Glass:	12
2.3	3. Brick	13
2.3	4. Cement composites	13
	.3.4.1. Concrete:	13
	.3.4.2. Reinforced Concrete (RC)	
2.4	.3.4.3. Cement Based Wall Plaster	
		14
2.4		14
	.4.1.1. Cement-Based Treated Materials	. 14 . 15
	2.4.1.1.2. Cement with Iron oxide	15
	.4.1.2. Nano-Treated Materials with Cement-Based Composites	15
	2.4.1.2.1. Cement with Nano-Titanium dioxide:	16
_	.4.1.3. Nano-Treated Materials with Polymer-Based Composites	.16
2.4	2. SWNTs17	
2.5	.4.2.1. SWNT/SCPU Composites	
		17
		17
2.0	1. The CST MWS Software	18
CHAP	TER 3 : ANALYSIS OF A CONVENTIONAL MULTILAYERED MODI	EL
		19
3.2.	THE DIELECTRIC PROPERTIES OF MATERIALS:	19
3.3.	CALCULATIONS:	20
3.4.	MATERIALS AND METHODS:	21
3.4	1. The Model Wall Description	21
3.5.	CALCULATION RESULTS OF THE MODEL MULTILAYERED WALL USING MATLA	λB
		21
3.6		23
	VERIFICATION OF THE SIMULATION RESULTS OF THE MULTI-LAYERED WALL:	23
3.7.		2.4
2.0		24
3.8.	DISCUSSION	24
CHAP	TER 4 :ANALYSIS OF THE EFFECT OF ROOF SHAPE AND OTHER	
BUILI	ING PARAMETERS ON EMR INDOORS	25
		25
4.2.	MATERIALS AND METHODS:	25
4.3.	THE BASE MODEL DESCRIPTION:	26
4.4.	NUMERICAL SIMULATIONS AND ANALYSIS	27
4.5.	ANALYSIS OF SIMULATED BUILDINGS WITH DIFFERENT ROOF-SHAPES .	28
4.:		28
		29
		31
		32
7	of the model banding with a content tool.	

4.5.5. Simulation of the Model Building with Dome (Hemispherical Roof):	34
4.6. THE EFFECT OF OPENINGS (DOOR AND WINDOWS)	35
4.6.1. The Effect of Wall Openings:	35
4.6.2. The Effect of Roof Openings:	36
4.7. A COMPARISON OF EMR INTENSITY INDOORS FOR ALL ROOF-SHAPES:	
	38
4.8. THE EFFECT OF BUILDING HEIGHT MODIFICATION	39
4.9. THE EFFECT OF ORIENTATION (THE DIRECTION OF INCIDENT RADIATION)	
	39
4.10. THE EFFECT OF SHIELDING WITH NEW TREATED MATERIALS:	39
4.10.1. The Effect of Using Carbon Nano Polyurethane Sheets as an Internal Wall-	
Cover:	39
4.10.2. The Effect of Replacing Regular Cement with Treated Cement Mixtures	
	40
4.11. DISCUSSION	41
CHAPTER 5: THE EFFECTIVENESS OF NEW TREATED MATERIALS IN	V
EM SHIELDING	42
5.1. Overview	42
5.2. DESCRIPTION	42
5.3. WALLS AND ROOF ARE CONSTRUCTED USING ONE MATERIAL	43
5.4. OPTIMIZING THE THICKNESS OF THE TREATED MATERIAL LAYERS:	44
5.4.1. Case 1: Multi-Layered Walls with Brick Size 20 cm and 2.5 cm Treated Cement-Based Render On Both Wall Sides	44
5.4.2. Case 2: Brick Size 22 cm with 1.5 cm Treated Cement-Based Render On Bo	
Wall Sides	ош 46
5.5. SINGLE-WALLED CARBON NANO TUBES SOLUBLE CROSS-LINKED	+0
POLYURETHANE (SWNT/SCPU) SHEETS	47
5.6. DISCUSSION	48
CHAPTER 6 :VALIDATION OF SIMULATION RESULTS	. 49
6.1. VERIFICATION OF THE SIMULATION RESULTS OF THE MULTI-LAYERED WALL:	
ERROR! BOOKMARK NOT DEFINED.	
6.2. VALIDATION OF THE SIMULATION RESULTS OF THE 3D-MODEL BUILDING:	49
6.3. DISCUSSION	51
CHAPTER 7 : SUMMARY & CONCLUSION	52
REFERENCES	. 56
APPENDIX A: THE CST MWS PROGRAM	63
APPENDIX B: THE MATLAB PROGRAM	64

List of Tables

Table 1.1: Microwave frequency bands [17]	7
Table 3.1: The EM parameters of building materials [27-42], [49-52], [60], [69], [71].
	19
Table 4.1: The Absolute Maxima and the Maximum EMP at different Sections for	· All
Roof-Shapes.	38
Table 4.2: The effects of treated cement mixtures on shielding EMR	40
Table 5.1: The effect of the different treated materials (wall thickness =25 cm)	44
Table 5.2: Summary of the results	46
Table 5.3: The Effect of Brick Thickness with Regular Cement (RC).	47
Table 5.4: Summary of cases with SWNT/SCPU sheets	48
Table 6.1: Comparison between field measurements and the simulation results	51