

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Pharmacy Pharmaceutical Chemistry Dept.

"Rational Design, Synthesis and Biological Evaluation of Certain Five Membered Ring Heterocycles" A Thesis

Submitted for the Partial Fulfillment of the Requirements for the

Master degree

In Pharmaceutical Sciences (Pharmaceutical Chemistry)

Presented by

Dalia El-Hady El-Sawah El-Sawah

Bachelor Degree in Pharmaceutical Sciences Faculty of Pharmacy, Sinai University, 2013

Under supervision of

Prof. Dr. Khaled Abouzid Mohamed

Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Dean of Faculty of Pharmacy, University of Sadat City

Prof. Dr. Yasser Mohamed Ali Loksha

Professor of Organic Chemistry Vice Dean, Faculty of Pharmacy, Sinai University

Dr. Eman Zaghlol El-Razaz

Lecturer of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University

Acknowledgements

Firstly, I am in ultimately thankful to **ALLAH** for giving me the ability and energy to complete this work.

I wish to express my deep gratitude to **Professor Dr. Khaled Abouzid**, Professor of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University and Dean of Faculty of Pharmacy ElSadat University, for his valuable guidance, and kind supervision during the development of this work. Words can't express the extent of his support and guidance to me

Words can't help me to express my deep thanks, and appreciation to **Prof. Dr. Yasser Mohamed Ali Loksha**, Professor of Organic Chemistry, Department of Pharmaceutical Chemistry, Vice Dean, Faculty of Pharmacy, Sinai University, for suggesting the research point, teaching me basic experimental skills, his continuous support and supervision.

I am greatly grateful to **Dr. Eman Zaghlol El-Razaz**, Lecturer of Pharmaceutical Chemistry, Ain Shams University, for her valuable guidance, fruitful advice and scientific supervision.

I wish to give my special gratitude to **Prof. Dr. Ali Mohamed Ali El Hagrasy**, Professor of Chromatography and Mass Spectrometry at National Research Center, for performing MS and HPLC purity analysis and his kindness during the practical work. Words can't express the degree of his support to me.

I wish to give special thanks to **Prof. Dr. Khalil Ahmed Abboud**, Professor of Chemistry, at Center for X-Ray Crystallography, University of Florida, Gainesville, and his student **Bradley Russel-Websterc**, for their help in performing the X-ray crystallography.

I grant with my deep thankfulness, CO-ADD (The Community for Anti-microbial Drug Discovery) was funded by the Wellcome Trust (UK) and The University of Queensland (Australia), for their help in performing the biological investigations.

Infinite appreciation to **all my dear colleagues** in Pharmaceutical Chemistry Department, Sinai University, and to **all workers** and **staff members** who helped me in this work to take its present form.

I wish to give my special gratitude to my family who implanted me the value of education and to my mother for her love, caring and kindness to finish this work.

Besides the work presented in this thesis, the candidate successfully passed general and special postgraduate courses in pharmaceutical chemistry for one year during academic year 2015/2016 with the following grades

1) Statistics	A
2) Instrumental Analysis	A
3) Computer Sciences	A
4) Physical Chemistry	B+
5) Pharmaceutical Chemistry	В
6) Drug Spectroscopy	A
7) Selected Topics in Pharmaceutical Chemistry	В
8) Drug Stereochemistry	A

Table of contents

Acknowledgment	I
Table of contents	III
List of figures	V
List of tables	VI
List of abbreviations	VII
Abstract	X
1. Introduction	1
1.1. Biological activities of thiazole	1
1.1.1. Anti-bacterial activity of thiazole derivatives	2
1.2. Multidrug resistant (MDR) bacterial infections	4
1.3. Mechanisms of ESKAPE resistant	5
1.4. Pathogenesis and virulence factors of Acinetobacter baumannii	7
1.4.1. Proteins of outer membrane (porins)	8
1.4.2. Factors of cell envelope (LPS and capsule)	8
1.4.3. Enzymes	8
1.4.4. Biofilm formation and quorum sensing	9
1.4.5. Motility	9
1.4.6. Micronutrient acquisition systems	9
1.4.7. Protein secretion systems	10
1.5. Mechanisms of anti-microbial resistant of <i>Acinetobacter baumannii</i>	10
1.5.1. Enzymes inactivating antibiotics	11
1.5.2. Reducing entry of drugs into the target sites	11
1.5.3. Alteration of the bacterial target due to mutations	12
2. Rational and design	12
2.1. Exploration of the previous revealed SAR (structure activity	13
relationship) studies for the lead compounds reported as ole1p inhibitors	
2.2. Diversification of the structure with retention of the essential	15
pharmacophoric groups. (bioisostric modifications)	

2.3. Synthetic schemes for synthesis of the designed compounds	16	
2.3.1. Scheme 1: Synthesis of <i>N</i> -(3-benzyl-4-hydroxy-4-		
methylthiazolidin-2-ylidene)acetamide		
2.3.2. Scheme 2a: Synthesis of 3-aryl-4-methylthiazol-2(3 <i>H</i>)-imine	17	
2.3.3. Scheme 2b: Studying the use of hydrazine derivatives instead of primary amine for synthesis of thiazol-2(3 <i>H</i>)-imines	18	
2.3.4. Scheme 3: Synthesis of 3-aryl-4,5,6,7-tetrahydrobenzo[d]thiazol-	18	
2(3 <i>H</i>)-imines (9a-d) and 2-phenyl-1,2,4- triazaspiro[4.5]decane-3-thione		
2.3.5. Scheme 4: Synthesis of 3-arylamino-2-imino-4-methyl- <i>N</i> -phenyl-	19	
2,3-dihydrothiazole-5-carboxamides (12a-c) and ethyl 3-benzyl-2-imino-4-		
methyl-2,3-dihydrothiazole-5-carboxylate (13).		
3. Results and discussion	21	
3.1. Chemistry	21	
3.1.1 Scheme 1	21	
3.1.2 Scheme 2a	23	
3.1.3 Scheme 2b	24	
3.1.4 Scheme 3	25	
3.1.5 Scheme 4	26	
3.2. Biological evaluation	26	
3.2.1 Primary screening of whole cell growth inhibition against gram	26	
negative Acinetobacter baumannii (ATCC-19606) at single dose of 32		
μg/mL		
3.2.2. Hit conformation screening	29	
3.2.3. Cytotoxicity assay	30	
3.2.4. Haemolytic assay	31	
4. Conclusion	32	
5. Experimental	33	
5.1. Chemistry	33	
5.1.1. Material and instrumentation	33	
5.1.2. Synthesis	33	
5.2. Biological evaluation	42	

Table of contents

5.2.1. Primary screening of whole cell growth inhibition against gram	42
negative Acinetobacter baumannii (ATCC-19606)	
5.2.2. Hit conformation screening	43
5.2.3. Cytotoxicity assay	43
5.2.4. Haemolysis assay	44
6. References	46

List of figures

Figure 1: Graphical abstract for the new synthesized compounds described in this work	
Figure 2: Mechanism of multidrug resistant bacteria	6
Figure 3: Schematic illustration of virulence factors of Acinetobacter baumannii	7
Figure 4: Diagram of several resistant mechanisms of <i>Acinetobacter baumannii</i> against antimicrobial agents	11
Figure 5: Proposed mechanism of regulation fatty acid desaturation by competition between Sct1p and Ole1p for C16:0-CoA	14
Figure 6: SAR of 1,2,4-triazolidine-3-thiones derivatives	15
Figure 7: Scaffold of 1,2,4-triazolidine-3-thiones derivatives depicting the highest anti-bacterial activity	16
Figure 8: Design of thiazole-2(3 <i>H</i>)-imine derivatives based on lead compound (IX)	16
Figure 9: X-ray crystal structure of compound 2	22
Figure 10: Postulated mechanism for the formation of compound 2	22

List of tables

Table 1: Percentage inhibition of the whole cell growth of Acinetobacter baumannii	26
(ATCC-19606) at MIC (32 $\mu g/mL$) showed by compounds 2 , 3 and 4	
Table 2: Percentage inhibition of the whole cell growth of Acinetobacter baumannii	26
(ATCC-19606) at MIC (32 $\mu g/mL$) showed by compounds 5 and 6	
Table 3: Percentage inhibition of the whole cell growth of Acinetobacter baumannii	27
(ATCC-19606) at MIC (32 $\mu g/mL$) showed by compounds ${\bf 8a}$ and ${\bf 8b}$	
Table 4: Percentage inhibition of the whole cell growth of Acinetobacter baumannii	27
(ATCC-19606) at MIC (32 μg/mL) showed by compounds 9a-d and 11	
Table 5: Percentage inhibition of the whole cell growth of Acinetobacter baumannii	28
(ATCC-19606) at MIC (32 μ g/mL) showed by compounds 12a-c and 13	
Table 6: The MIC values for compounds 8a, 8b, and 11	29
Table 7: Cytotoxic activity for compounds 8a, 8b, and 11 against human embryonic	30
kidney (HEK-293) cells	
Table 8: Haemolytic activity for compounds 8a, 8b, and 11 against human red	30
blood cells	

List of abbreviations

Acinetobacter baumannii
5-acetyl-4-methyl-2-(3-pyridyl) thiazole
Anti-microbial stewardship programs
Chromobacterium violaceum
Centers for disease control and prevention
Human immunodeficiency virus
Intensive care units
Klebsiella pneumonia
Kilodalton
Lipopolysaccharide
Multidrug resistant
Methicillin resistant Staphylococcus aureus
Outer membrane protein A
Pseudomonas aeruginosa
Staphylococcus aureus
Streptococcus pneumonia
Type two secretion system
World health organization

AceI	Acinetobacter-chlorhexidine-efflux protein
DMF	Dimethyl formamide
CpaA	Glycan-specific-adamalysin-like protease
BapAb	Biofilm associated proteins of Acinetobacter baumannii
Csu	Chaperon/usher pilus system
PNAG	Poly-β-1,6-N-acetylglucosamine
FecA	Ferric citrate
IC ₅₀	The concentration of inhibitor needed to inhibit enzymatic activity by 50%
Ata	Trimeric autotransporter
Lip	Lipase
T6SS	Type VI secretion system
m.p	Melting point
LCFA	Long chain fatty acid
NBS	N-bromosuccinimide
MUFAs	Monounsaturated fatty acids
SAR	Structure-activity relationship
HEK	Human embryonic kidney cell
DMSO	Dimethyl sulfoxide
CC50	Concentration that reduces the cell viability by 50%

List of abbreviations

HC ₅₀	50% Hazardous concentration
HC ₁₀	10% Hazardous concentration
MIC	Minimum inhibitory concentration
OD	Optical density
САМНВ	Cation-adjusted mueller hinton broth
CFU	Colony forming unit
MAD	Mean absolute deviation
DMEM	Dulbecco's modified eagle medium
FBS	Fetal Bovine Serum

X

Abstract

The resistant of *Acinetobacter baumannii* to almost all the available anti-microbial agents and their susceptibility for the epidemic spread, made an urgent need for discovering new targets for inhibition of virulent *Acinetobacter baumannii*, without stimulation of other resistant. Long chain fatty acid (LCFA) pathway of *A. baumannii* is a vital factor for bacterial physiology, make it an attractive target for drug discovery. Ole1p (Δ 9-fatty acid desaturase enzyme) is a key element in LCFA pathway. It responsible for converting saturated fatty acyl-CoA substrates to monounsaturated fatty acids which is critical for membrane permeability, biofilm formation and surface motility. In this study, the main aim is to design novel thiazol-2(3*H*)-imine derivatives targeting Ole1p. The design focused on exploration of the previously exposed SAR studies and bioisosteric modifications of the lead compounds. The structure and purity of each final synthesized compound were confirmed by X-ray crystallography, 1 H-NMR, 13 C- NMR, EI-MS, and elemental analysis.

Figure 1: Graphical abstract for the new synthesized compounds described in this work.

This study involves the synthesis of the following new compounds:

- 1) N-(3-Benzyl-4-hydroxy-4-methylthiazolidin-2-ylidene)acetamide (2)
- **2)** 4-Methyl-3-(*p*-tolyl)thiazol-2(3*H*)-imine (**5**)
- 3) 5-Bromo-4-methyl-3-(p-tolyl)thiazol-2(3H)-imine (6)
- 4) 3-(o-Tolyl)-4,5,6,7-tetrahydrobenzo[d]thiazol-2(3H)-imine (9a)
- 5) 3-(p-Tolyl)-4,5,6,7-tetrahydrobenzo[d]thiazol-2(3H)-imine(9b)
- **6**) 4-(2-Imino-4,5,6,7-tetrahydrobenzo[d]thiazol-3(2*H*)-yl)phenol (**9c**)