

ASUNE.

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

-C-02-500-2-

Suez Canal University

Faculty of Petroleum and Mining Engineering
Department of Metallurgical Engineering

B17432

A Thesis for الما من الما من

A STUDY ON DISSIMILAR WELDING OF NICKEL-BASE ALLOYS AND CARBON STEEL

Вy

Ahmed Abdel-Monem Ahmed

B. Sc. (Metallurgical Engineering)

Supervised By

Prof. Dr. Eng. Mahmoud Ibrahim Abbas

Prof. Dr. Eng. Abdel-Karim Abdel-Salam Ahmed

Ass. Prof. Dr. Eng. Alber Alphonse Sadek

April, 1999

DEDICATION

Dedicated to my parents and my wife whose patience and continuing encouragement constitute a major source of inspiration for me during the whole period of study.

SUMMARY

In chemical and petrochemical industries, economics dictates that a wide variety of dissimilar metal welding is unavoidable. The most important factor involved in the welding of dissimilar metals is the selection of a suitable welding electrode.

This study has been carried out to clarify and evaluate the effect of welding consumable on the properties of dissimilar joints between carbon steel and monel alloy. Also, the effect of post weld heat treatments on the properties of weldments was evaluated. Nickel base electrodes ENiCu-7, ENiCrFe-3 & and autogenous welding have shown to be suitable for most service conditions.

In addition to the evaluation of the corrosion behaviour, optical metallography, tension tests, hardness measurements and X-ray diffraction analysis were employed to qualify the weldments.

The results showed that ENiCu-7 yields the highest corrosion resistance, treatment (1) (heating at 650°C for 30 min, then rapid cooling) gives the highest corrosion rates and mechanical properties meanwhile, treatment (4) (Heating at 300 °C and held there for 30 min, then heating at 650 °C and held there for 30 min, then heating at 900 °C and held there for 30 min, then rapid cooling) gives the lowest corrosion rates and the lowest mechanical properties.

Contents

Subject	page				
Acknowledgement	I				
Summary	II				
CHAPTER 1. INTRODUCTION					
CHAPTER II. LITRATURE SURVEY					
II-A Types of Nickel Base Alloys	4				
II-A-1 Commercially Nickel					
II-A-2 Nickel-Copper alloys					
II-A-3 Nickel Molybdenum and Nickel-Chromium-Molybdenum alloys					
II-A-4 Nickel-Chromium-Iron alloys					
Π-A-5 Nickel-Iron-Chromium alloys	11				
II-A-6 Nickel-Base Superalloys					
II-A-7 Nickel-Silicon Alloys	14				
II-B Dissimilar Metal Welding					
II-B-1 Weld Metal					
II-B-2 Dilution and Alloying					
II-B-3 Melting Temperature					
II-B-4 Thermal Conductivity					
II-B-5 Thermal Expansion					
II-B-6 Preheat and Post Weld Heat Treatment					
II-B-7 Service Consideration	23 25				
II-B-8 Other Welding Considerations					
II-B-9 Filler Metal Selection					
II-B-10 Welding Process Selection	39				
CHAPTER III EXPERIMENTAL WORK					
III-1 Material	51				
III-2 Welding Electrodes					
III-3 Welding Technique	53				
III-4 Joint Design	54				
III-5 Welding Joint Assembly and Fixation					
III-6 Test Samples					
III-7 Area Measurements					
III-8 Metallugraphic Examination					
III-9 Post Weld Heat Treatment					
III-10 Hardness Measurements	60				
III-11 Dilution	60 61				
III-12 Tension Test					
III-13 Chemical Analysis of Weld Metal					

		62
III-14 X-ray Analysis		62
III-15 Inspection		63
III-16 Corrosion Testing		
CHAPTER IV RESULTS AND DISCUSSI	ON	
IV-1 Selection of Suitable Welding Electrodes		67
JV-2 Study of Nickel Base Electrode ENiCu-7		67
IV-2-1 Structure of Welded Joint		67
IV-2-2 Dilution Calculation	ere .	68
1V-2-3 Weldmetal Composition Determination		68
JV-2-4 Post Weld Heat Treatments		. 69
IV-2-5 X-ray Analysis		69
IV-2-6 Hardness Measurements		69
JV-2-7 Tension Test		70
IV-2-8 Corrosion Tests		71
IV-3 Study of Nickel Base Electrode ENiCrFe-3		88
IV-3-1 Structure of Welded Joint		88
IV-3-2 Dilution Calculation		88
IV-3-3 Weldmetal Composition Determination		88
IV-3-4 Post Weld Heat Treatments		89
IV-3-5 X-ray Analysis		89
IV-3-6 Hardness Teasurements		89 90
IV-3-7 Tension Test		90
IV-3-8 Corrosion Tests		105
IV-4 Study of Autgenous Welding		105
IV-4-1 Structure of Welded Joint		105
IV-4-2 Dilution Calculation		105
IV-4-3 Weldmetal Composition Determination		106
JV-4-4 Post Weld Heat Treatments		106
IV-4-5 X-ray Analysis		106
IV-4-6 Hardness Measurements		107
IV-4-7 Tension Test		107
IV-4-8 Corrosion Tests		107
CONCLUSION		126
REFERENCES		127

CHAPTER I INTRODUCTION

CHAPTER II LITERATURE SURVEY

Strictly speaking almost all joints made with a fusion process are dissimilar. The weld metal is cast and the parent metal is most often wrought. Fine differences in composition are apparent and are usually deliberate. These minor differences are normally taken for granted and a definition of a dissimilar joint as being one between two parent materials of different alloy systems or groups within an alloy system may be adopted [5].

Several examples of dissimilar metal welds are used in process industries.

- In oil gasifigasion plants, there is a certain mixture of gases in each zone of
 the plant and some regions are exposed to strong corrosive mediums so, there
 is a need of corrosion resistant material in this region for this reason, dissimilar
 metal welding between carbon steel and nickel base alloys is essential [6].
- The trend towards higher operating temperatures in nuclear reactor systems
 necessitates the use of transition joints between combinations of materials
 such as ferritic stainless steel and nickel base alloys [7].
- In direct fired process heaters, as used in the petroleum and chemical industries, it is common to find tubes of different materials such as mild steel and nickel base alloys. The choice of material is largely dependent on the design metal temperature so, it changes from one part of the heaters to another as the fluid temperature and heat flux change [8].
- In marine service, some parts consist of mild steel which may be adequate while other parts have to be made of nickel base alloys such as monel and inconel where resistance to attack of chlorine ions, mineral acids, nitrides and stress corrosion cracking are required. [9].

- Because of the higher corrosion resistance of nickel alloys than low carbon steel it is always necessary to replace the low carbon steel skirt box of fluorine generators by monel 400 skirt box so, dissimilar metal welding between Monel 400 skirt box and low-carbon steel cover in this case is essential [10].
- Weldements used in nuclear-power reactor systems need more rigid quality standards than those required in conventional power-plant applications.
 Consequently, there has been considerable interest in the use of nickel base alloys for the construction of certain nuclear-power-plant components, particularly in systems of the pressurised-water reactor type so, it is highly essential to weld carbon steel to nickel base alloys [11].

II-A Types of Nickel Base Alloys

Nickel is an excellent structural metal for many engineering applications. It has the FCC crystal structure so it is tough and ductile. It also has good high and low temperature strength as well as high oxidation resistance and good corrosion resistance for most environments. Few metals can match the attractive engineering properties of nickel. Unfortunately, its greatest disadvantage is its relatively high cost, and thus its use as a base metal for alloys is greatly limited. Nickel-base alloys are therefore used when no cheaper types can provide the necessary corrosion, or heat resisting properties required for special engineering application. There are at least seven nickel alloy systems of major commercial importance [12].

- 1. Commercial nickel.
- 2. Nickel-copper alloys,