

Association between Maternal and Neonatal Vitamin D status and the Development of Congenital Anomalies

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Mohamed Mahmoud Ramadan Khalifa

M.B., B.Ch, Faculty of Medicine - Shams University (2015)

Under supervision of

Prof. Dr. Mohamed Nasr El-Deen El-Barbary

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Prof.Dr./ Sahar Samir Abd El-Maksoud

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Suzan Abd El-Razek Mohamed

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Masr El-Deen El-Barbary**, Professor of Pediatrics Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to **Prof. Dr./ Sahar Samir**Abd El-Maksoud, Professor of Clinical Pathology Faculty of

Medicine, Ain Shams University, for her great help, active

participation and guidance.

I am also delighted to express my deepest gratitude and thanks to **Dr. Suzan Abd El-Razek Mohamed**, Lecturer of Pediatrics Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Mohamed Khalifa

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	7
Review of Literature	
Vitamin D in Pregnancy	8
Congenital Anomalies	25
Vitamin D Deficiency and Adverse Fetal Outcom	mes34
Patients and Methods	43
Results	48
Discussion	69
Summary and Conclusion	82
Recommendations	85
References	86
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Major congenital malformations	
Table (2):	Minor congenital malformations	27
Table (3):	Comparison between patients grecontrol group regarding demograp and maternal history	hic data
Table (4):	Comparison between patients greentrol group regarding antenaneonatal history	tal and
Table (5):	Comparison between patients green control group regarding vitamin calcium supplementation during pro-	D and
Table (6):	Maternal and Neonatal vitamin D patient and control group	
Table (7):	Relation between maternal vit status stratification with neonatal D status stratification	vitamin
Table (8):	Correlation of maternal vitamin with neonatal vitamin D level in group.	patients
Table (9):	Comparison between patients green control group regarding materine neonatal vitamin D status stratifications.	nal and
Table (10):	Category of congenital anomalies in	group 1a58
Table (11):	Subtypes of congenital anomalies in	group 1a58
Table (12):	Relation between maternal and vitamin D level with type of Co Anomaly	ongenital
Table (13):	Relation between maternal vita Category with neonatal type of co anomaly	ongenital

List of Tables Cont...

Table No.	Title	Page No.
Table (14):	Correlation of maternal vitamin with maternal age, total number and neonatal birth weight	of births
Table (15):	Correlation of neonatal vitamin with maternal age, birth weight a of birth.	nd order
Table (16):	Relation between maternal and vitamin D level with antena neonatal history in group 1_1a	tal and
Table (17):	Relation between maternal vita status stratification with antena neonatal history in group 1	atal and
Table (18):	Relation between maternal vita stratification with vitamin D and supplementation during pregnancy	calcium
Table (19):	Relation between maternal vita status stratification with antena follow up and neonatal history	tal care

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Vitamin D metabolism in the liver hydroxylation of vitamin D occurs le to 25(OH)D	ading	9
Figure (2):	Vitamin D metabolic pathways d pregnancy across maternal, fetal placental compartments	and	12
Figure (3):	Diseases and conditions associated maternal vitamin D deficiency		19
Figure (4):	Model of <i>in utero</i> VDD-induced epige effects on long-term health outcom offspring	es in	42
Figure (5):	Maternal and neonatal vitamin D lepatients group (1 and 1a)		53
Figure (6):	Maternal and neonatal vitamin D lecontrol group (2 and 2a)		54
Figure (7):	Comparison between patients group control group regarding maternal vit D status stratification.	tamin	57
Figure (8):	Comparison between patients group control group regarding neonatal vit D status stratification	tamin	57
Figure (9):	Category of congenital anomalies in a		59
Figure (10):	Correlation of maternal vitamin D with birth weight		62
Figure (11):	Correlation of neonatal vitamin D with order of birth.		64
Figure (12):	Correlation of neonatal vitamin D with birth weight.		64

List of Abbreviations

Abb.	Full term
1,25-DHCC	1,25- dihydroxycholecalciferol
25OHD	25 hydroxyvitamin D
Ca	<u>C</u> alcium
CAs	Congenital anomalies
CHD	Congenital heart disease
CNS	<u>C</u> entral nervous system
C-section	Cesarean section
CT	Computed tomography
DOHaD	<u>D</u> evelopmental origins of health and disease
GDM	<u>G</u> estational diabetes mellitus
HATs	Histone acetyl transferases
HDACs	<u>H</u> istone deacetylases
IOM	Institute of medicine
MRI	Magnetic resonance imaging
NTDs	Neural tube defect
P	<u>P</u> hosphorus
PTH	Parathyroid hormone
PTHrP	PTH-related peptide
RCTs	Randomized Clinical Trials
RXR	Retinoid X receptor
SGA	Small for gestational age
VACTERL	\underline{V} ertebral anomalies, anal atresia, cardiac
	defects, trachea-esophageal fistula, renal anomalies, limb defects
VDR	. <u>V</u> itamin D receptor
	<u>V</u> itamin D response element
۰ سارا ۱ سارا ۱ س	vitamin D response element

Introduction

Vongenital anomalies (CAs), also known as congenital mal-I formations or birth defects, can be defined as functional or structural anomalies that occur during intrauterine life (Elghanmi et al., 2020).

Its etiology is unknown in 50% of cases and genetic in 30-40% and environmental in 5-10%. Medications, infectious agents, and environmental toxins had all been implicated as teratogens (Onankpa et al., 2014).

Vitamin D is not only a lipid-soluble vitamin, but also a steroid hormone that can be synthesized endogenously. It has an important role in calcium (Ca)-phosphorus (P) homeostasis (Holick et al., 2016).

Molecular and genetic studies confirm that vitamin D also has role in epigenetic modification and it modulates the risks of several other human diseases, including autoimmune disorders (Zeitelhofer et al., 2017).

Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. Epigenetic changes can not only modulate the individual adaptation to the

environment but also have an influence on lifelong health and disease (Indrio et al., 2017).

Vitamin D regulates the essential pathways of cellular metabolism and differentiation via its nuclear receptor (vitamin D receptor) (VDR). In addition to this, vitamin D markedly influences the regulation of cell replication (Karlic et al., 2011).

Vitamin D deficiency in pregnancy has been found to be associated with development of multiple congenital anomalies in offspring in several studies, like congenital heart disease, congenital neural tube defect, congenital diaphragmatic hernia (Kim et al., 2016).

Thus, it is advisable to review Vitamin D deficiency in and their offspring so that strategies can be implemented to prevent the impact of vitamin D deficiency on the fetus.

AIM OF THE WORK

This study aims to evaluate the potential association between maternal and neonatal vitamin D status and the subsequent development of congenital anomalies.

Chapter One

VITAMIN D IN PREGNANCY

Physiology of vitamin D

physiological forms: Ergocalciferol, (vitamin D2) and Cholecalciferol (vitamin D3) (*DeLuca*, 2014). These two forms basically differ in their side chain structure, While D2 is mainly obtained from plants and vegetable sources, D3 is majorly synthesized in the skin on exposure to sunlight (UVB radiation) from 7 dehydrocholesterol, Both forms of vitamin D are also available as dietary supplements (*De-Regil et al.*, 2016).

All the forms of vitamin D are activated only on enzyme-mediated hydroxylation.

The first hydroxylation reaction is mediated by 25α -hydroxylase, to produce 25 hydroxyvitamin D (25OHD) or calcidiol and takes place in the liver, This is followed by the next hydroxylation step in the kidney, mediated by 1α -hydroxylase, to produce 1,25- dihydroxycholecalciferol (1,25-DHCC) or calcitriol (*Harvey et al.*, 2014). (**Figure 1**)

While 25OHD is the most abundant circulating form of vitamin D, 1,25-DHCC is the most active form. The hydroxylation reactions and the availability of active vitamin D are regulated by serum calcium and phosphorus and parathyroid hormone (PTH) (*Sahota*, 2014).

Titamin D in Pregnancy

Review of Literature

Figure (1): Vitamin D metabolism in the liver, 25-hydroxylation of vitamin D occurs leading to 25(OH)D. In the kidney, a second hydroxylation takes place by 1 α -hydroxylase leading to the formation of 1,25-dihydroxivitamin 2D, the biologically active form of vitamin D (*Holick et al.*, 2006).

Dietatic sources of vitamin D (Dawodu et al., 2013).

Vitamin D is also found in a number of foods:

- Oily fish such as salmon, sardines and mackerel
- Red meat
- Liver and beef
- Milk
- Egg yolks
- Fortified foods such as some fat spreads and breakfast cereals

Vitamin D is a secosteroid, which is also considered an important prohormone (*Weinert et al., 2015*). Since vitamin D receptors (VDRs) are present in many cells and tissues throughout the body, many studies support the role of vitamin D in several physiological functions beyond bone and muscle

health (*Joergensen et al.*, *2014*). During pregnancy, vitamin D plays a vital role in embryogenesis, especially fetal skeletal development and calcium homeostasis (*Hollis et al.*, *2011*).

Several studies suggested the increasing prevalence of vitamin D deficiency in pregnancy and the associated adverse maternal and fetal outcomes, such as gestational diabetes mellitus (GDM), preeclampsia, small for gestational age (SGA) and preterm births (*Palaniswamy et al.*, 2016).

Vitamin D physiology during pregnancy

During pregnancy, mobilization of maternal calcium increases to meet the demands of adequate fetal bone mineralization (*Olmos-Ortiz et al.*, 2015). As a consequence, a number of physiological adaptations take place, including increased maternal serum calcitriol, vitamin D binding protein (DBP) and placental VDR activity to maintain normal serum levels of 25OHD and calcium (*Olmos-Ortiz et al.*, 2015).

Besides the kidneys, the placenta can potentially activate 25(OH) D, since it contains the enzyme 1-α-hydroxilase producing 1, 25(OH) 2D. Moreover, placenta has a paracrine control of vitamin D metabolism and it may also inactivate 25(OH)D by 24-hydroxylation to 24,25(OH)2D. This makes it possible for a local regulation of vitamin D levels within the placental tissue that may modulate anti-inflammatory effects

and affect pregnancy development and/or perinatal outcomes (Liu et al., 2012) (Fig. 2).

Plasma levels of 1.25 (OH) 2D increases in early pregnancy, reaching a peak in the third trimester and returning to normal during lactation. A potent stimulus to placental transfer of calcium and placental synthesis of vitamin D is the PTH-related peptide (PTHrP), produced in the fetal parathyroid and placental tissues, which increases the synthesis of vitamin D. The PTHrP can reach the maternal circulation and it acts through the PTH/PTHrP receptor in the kidney and bones, being a mediator in the increase of 1.25(OH) 2D and helping in the regulation of calcium and PTH levels in pregnancy.

Other signals involved in the regulation process include prolactin and the placental lactogen hormone, which increase intestinal calcium absorption, reduce urinary calcium excretion and stimulate the production of PTHrP and 1.25(OH) 2D (Mulligan et al., 2010).