

ASUNE.

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

بالرسالة صفحات

لم ترد بالأصل

-C-02-500-2-

B17459

Breeding for Improving Yield and Quality in Sweet Potato (Ipomoea batatas (L.) Lam.)

By Abd El-Hakim Shawky Badawy

B.Sc. Agric. Sci. (Vegetable crops), Assiut Univ. (1987). M.Sc. Agric. Sci. (Vegetable crops), Assiut Univ. (1993).

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In Horticulture (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Assiut University

2001

Supervised by:

Prof. Dr. G.I. Shalaby Prof. Dr. K.A. Okasha Prof. Dr. H.A. Hussein

Examined by:

Prof. Dr. G.I. Shalaby Prof. Dr. H.A. Hussein Prof. Dr. M.A. Farghali Prof. Dr. M.N. Hassan

وأنزل الله عليك الكتاب والمكمة وعلمكما لم تكن تعلم وكان فقل الله عليك عظيما وفقل الله عليك عظيما و

" صدق الله العظيم " ((سورة النساء سم آية ١١٣))

APPROVAL SHEET

Name: Abd El-Hakim Shawky Badawy

Title: Breeding for improving yield and quality in sweet potato (*Ipomoea batatas* (L.) Lam.)

Approved by:

M. A. Farghatz

Barren A. Hurren

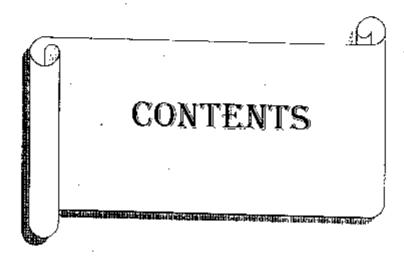
M-NM Hasson

(Committee in charge)

Date: 24/4/2001

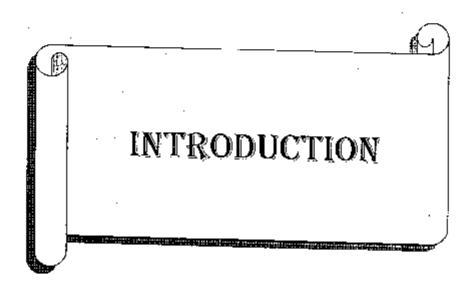
ACKNOWLEDGEMENT

ACKNOWLEDGMENT


First of all, prayerful thanks to our merciful God "ALLAH"

I wish to express my deepest thanks and gratitude to *Prof. Dr. Gamil I. Shalaby*, Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Assiut University, for his supervision, valuable guidance throughout the course of this study and his great help in preparing and reviewing the manuscript.

I wish to express my deepest thank to *Prof. Dr. K.A. Okasha*, Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University, for his help and supervision during this work.


Also, I wish to express my deepest thank to *Prof. Dr. Hassan A. Hussein*, Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Assiut University, for continuous advice, continuous cooperation, preparation of this manuscript and supervision during this work.

Last but not least, thanks are due to my wife and family and all worker in the Department of Horticulture, Faculty of Agriculture, Assint University and Department of Vegetatively Propagated Crops, Hort. Res. Institute, A.R.C., Giza, Egypt, for their cooperation and continuous help during this work.

CONTENTS.

Subject	Page
Introduction	l'.
Review of Literature	3
I- Genetic variation	3 ·
II- Improvement of sweet potato	
a- Selection	15`
b- Crossing and hybrid vigour	21
o- rrow approaches	27
Materials and Methods	32
I- First Experiment: Clonal selection in a natural-pollination	-14-
population	32
II- Second Experiment: Production of new genotype from one	-3 4
generation selfing (S ₁) of an introduced genotype	34.4
III- Third Experiment: Production of F ₁ hybrid	35
Experimental Results	42.
I- First Experiment: Clouds selection in a natural-pollination	42
population :	5Ž
I-A- Vegetative growth parameters	42
I-B- Yield and its components	46
I-C- Storage-root quality	51
l-C-a- Physical characters	31 51
I-C-b- Chemical characters	54
I-2- Combined analysis of variance for some vegetative	-34
characters, yield and storage-root quality	4 2
II- Second Experiments: Production of new genotype from	62
one-generation selfing population	6.4
D-A- Vegetative growth parameters	66
ll-B- Yield and its components	.66
II-C- Storage-root quality	70 75
II-C-a- Physical characters	75 75
II-C-b- Chemical characters	75 70
II-2- Combined analysis of variance for some vegetative	78
characters, yield and storage-root quality	97
·	86
·	

INTRODUCTION

The sweet potato [*Ipomoea batatas* (L.) Lam] is an asexually propagated vegetable crop that is grown mainly in tropical and subtropical regions. Sweet potato is a member of the convolvulaceae family and the only known natural hexaploid morning glory (6n=90), **Jones** (1965a).

Sweet potato is considered to be one of the important energy-vegetable crops, characterized by a high nutritional value. It is grown usually for their edible tubers, and considered an important source of food in many countries. It is also used for canning, dehydration, flour manufacture, and as a source of starch, glucose, syrup and alcohol (Jones, 1965a).

In Egypt, sweet potato is grown during the summer season, where its acreage reached about 14400 feddan in 1998, yielding about 155000 tons with an average of 10.6 tons/feddan (FAO, 1998)*.

In the last years, production of the local commercial cultivars in Egypt has been deteriorated due to either deterioration of these cultivars; using old traditional cultural practices or susceptibility of these cultivars to some diseases and insects. Therefore, improvement of sweet potato production becomes greatly needed. This improvement could be achieved throughout different methods such as introducing high yielding capacity genotypes and/or hybridization among the promising genotypes followed by selection for highly potential characterization.

An earlier work of Shalaby et al. (1994) indicated the possibility of inducing flowering and seed setting in some introduced genotypes of sweet

^{*}FAO production Year Book Vol. 52, 1998.

potato under Assiut conditions (Upper Egypt) giving evidence to overcome either self-or cross-incompatibility in such genotypes. Accordingly, selfing and/or crossing among these genotypes can be done and in turn high-yielding new genotypes can be selected.

Therefore, the main objective of the present investigation was to produce new sweet potato genotypes with high-yielding capacity and good storage-roots quality. This could be achieved by: I) clonal selection in a population raised from natural-pollination between two introduced genotypes, 2) production of new genotype from one-generation selfing (S_1) of an introduced genotype, and 3) getting use of hybrid-vigour expression in producing F_1 hybrid in sweet potato.