

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Effect of Using Different Primary Crown Materials on the Frictional fit of CAD/CAM Telescopic Partial Dentures

A Thesis Submitted to Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry - Ain Shams University in Partial Fulfillment of the Requirements for Master's degree in Oral and Maxillofacial Prosthodontics

By Soha Saeid Mohammed ElSaeid

B.D.S, Ain Shams University,(2013)

Faculty of dentistry Ain-Shams University 2022

Supervisors

Dr. Hebatallah Tarek Mohamed

Associate Professor of Oral & Maxillofacial Prosthodontics
Faculty of Dentistry
Ain Shams University

Dr. Yasmine Galal Eldin Thabet

Associate Professor of Oral & Maxillofacial Prosthodontics
Faculty of Dentistry
Ain Shams University

بِسْ لِللَّهِ ٱلدَّهُ الرَّالَحِيهِ

ظر قاس الخطين

سورة طه – الآية (١١٤)

Acknowledgement

First thanks are for **Allah**, the Most Gracious and the Most Merciful, all praises to Allah for the strengths and his blessings in completing this thesis.

I'd like to express my respectful thanks and profound gratitude to **Dr. Hebatallah Tarek Mohamed**, Associate Professor of Oral & Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Yasmine Galal Eldin Thabet**, Associate Professor of Oral & Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would also like to extend my sincere gratitude and thanks to **Dr. Mohammed Abdel Rahman M. Muwafi**, Lecturer of Oral & Maxillofacial Prosthodontics, Faculty of Dentistry, Ain Shams University for his enormous help and guidance throughout this work.

My deepest thanks and appreciation to all my professors and colleagues in the Oral and Maxillofacial Prosthodontics department for supporting and guiding me.

Didection

To My Family who supported me

My Father and my Amazing Mother

My Brother and Sisters Ahmed, Maha, Samar

My Friends Rana& Hanan

Chank you for the endless support and Love

List of Contents

Title	Page No.
List of Figures	I
List of Tables	III
Introduction	1
Review of literature	3
I- Impact of edentulism	3
II-Treatment options for partially edentulous patients	
A-Implant	
B-fixed partial denture	5
C-Shortened dental arch	5
D-Removable partial denture	5
III. Removable Partial Dentures with attachment systems	6
Classification of Partial denture attachments	8
i. Based on their method of fabrication and the tolerance components.	
ii. Based on their relationship to the abutment teeth	
iii. Based on function or movement	9
iv. According to methods of retention	9
IV-Telescopic retained partial denture	9
Types of telescopic attachments	10
Cylindrical Crowns	10
Conical Crowns	10
Modifications of the crown Designs	11
Advantages and disadvantages of telescopic attachments	12
Material used to fabricate telescopic attachments	13
V. Different materials used for partial denture construction	15
Metallic partial denture	15
Acrylic partial dentures	16
Flexible RPDs	17
Zirconium dioxide	18
PEEK and BioHPP	19

VI-Different fabrication techniques for removable partial framework	20
A-Lost wax technique	21
B- CAD/CAM technology	21
i- Subtractive method	23
ii- Additive method	25
VII. Evaluation of cyclic fatigue and deterioration of Telescopic Retained Partial Denture	27
VIII-Evaluation of retention of partial denture	29
Aim of the Study	31
Materials and Methods	32
I- Preparation of the Educational model	32
II- Scanning the model	34
III- Printing of the models	36
IV- Scanning of the printed models	39
V- Designing the primary copings	39
VI- Fabrication of the primary copings	42
VII- Designing the secondary copings	44
VIII- Designing the RPD frameworks	46
IX- Fabrication of the frameworks	50
X- Evaluation of the frictional fit	51
Preparation of the artificial saliva	52
Modification of the base of the cast	52
Measurement of intial frictional forces	53
Chewing simulation	56
Evaluation of frictional forces after function simulation	59
Results	61
Discussion	64
Conclusion	77
Recommendations	78
Summary	
References	
Arabic Summary	—

List of Figures

Fig. No.	Title Pa	ge No.	
Figure (1):	Maxillary Educational cast	32	
Figure (2):	Sectioned Rubber Base.		
Figure (3):	Surveying and Axial Reduction.		
Figure (4):	Axial Reduction		
Figure (5):	Confirmation of the amount of reduction.		
Figure (6):	Model inside the 3Shape Scanner		
Figure (7a):	Virtual Model with Removable Dies (occlusal view)		
Figure (7b):	Virtual Model with Removable Dies.(side view)	35	
Figure (8):	Removable Dies with Apical Stops	35	
Figure (9):	Model on Meshmixer after creation of soft tissue spaces	36	
Figure (10):	Creation of Model Supports	37	
Figure (11):	Model with base and supports.	37	
Figure (12a):	The printing machine	37	
Figure (12b):	Liquid model resin	37	
Figure (13):	Printed Model	38	
Figure (14):	Gingival Mask Injection under Clear Vacuum formed stent	39	
Figure (15a):	Printed Models with Soft Tissue Simulating Material. (top vi	ew)39	
Figure (15b):	Printed Models with Soft Tissue Simulating Material. (side vi	ew)39	
Figure (16):	Finish Line Detection after Model and Die Scanning	40	
Figure (17):	Primary Telescopes Design.	40	
Figure (18):	Adjusting Tooth Positions and Path of Insertion	41	
Figure (19):	Primary Telescopes features (Modified Murburg Design)	41	
Figure (20):	Final Design and Finish Line. Adjustments.		
Figure (21):	Final Step of PrimaryTelescopes Design		
Figure (22a):	Fully Sintered Co-Cr.		
Figure (22b):	Zirconia Blank	42	
Figure (23):	Fitting Surface of Co-Cr crowns	43	
Figure (24):	External Surface of Co-Cr crowns	43	
Figure (25a):	Trial Fitting of the Primary Zirconia Crowns	43	
Figure (25b):	Trial Fitting of the Primary Cobalt Chromium Crowns	43	
Figure (26a):	Sandblasting of the Fitting Surface of the Cobalt Chromium C	Crowns43	
Figure (26b):	Sandblasting of the Fitting Surface of the Zirconia Crowns	43	
Figure (27):	Cementation of the Primary crowns.		
Figure (28a):	Cemented Cobalt Chromium Primary Crowns.		
Figure (28b):	Cemented Zirconia Primary Crowns	44	
Figure (29):	Path of Insertion determination.		
Figure (30):	Determination of undercuts.	45	

Figure (31):	Block-Out of undercuts.			
Figure (32) :	Artificial Teeth Placement.			
Figure (33):	Adjusting Teeth Positions.			
Figure (34):	Reduction of the labial surface	46		
Figure (35):): Finished secondary crowns			
Figure (36):	Outlining the Denture Base.	47		
Figure (37):	Denture Base Design.	47		
Figure (38):	Denture Base Orientation.	47		
Figure (39):				
Figure (40):	Generated Textured Major Connector	48		
Figure (41):	Completed RPD desgin.	49		
Figure (42):	The External Finish lines.	49		
Figure (43):	The Internal Finish lines.	49		
Figure (44):	Milled Co-Cr RPD Framework. (Fitting Surface)	50		
Figure (45):	Milled Co-Cr RPD Framework. (External Surface)			
Figure (46):	The finished Denture with Veneered labial surface.	51		
Figure (47):	Rubber Base Index for position of teeth	51		
Figure (48a):	Components of Glandosane artificial saliva.	52		
Figure (48b):	Glandosane artificial saliva	52		
Figure (49):	Acrylic Resin Base for Chewing Simulator.	52		
Figure (50):	Measuring the distance between the tuberosities.	53		
Figure (51):	Measuring the midpoint of the midline	53		
Figure (52a):	Lines drawn on the cast.	53		
Figure(52b):	Geometrical ceter of RPD	53		
Figure (53):	Metal plate attached to the occlusal surface of model.	54		
Figure (54):	Wetting of the framework with artificial saliva.	55		
Figure (55):	INSTRON universal testing machine.			
Figure (56):	Dislodging force measurement.	56		
Figure (57):	Chewing Simulator	57		
Figure (58):	Model in chewing simulator chamber.	57		
Figure (59):	The stylus in contact with the center of the horizontal metal plate	57		
Figure (60):	Movement parameters of the chewing simulator	58		
Figure (61a):	Software parameters of the Chewing Simulator	58		
Figure (61b):	Software parameters of the Chewing Simulator			
Figure (62):	Bar chart showing frictional fit values for both groups as function of			
	measurement stage.	61		
Figure (63):	Bar chart comparing between total frictional fit mean values for both			
	groups	63		

List of Tables

Table No),	Title	}	Page No.
Table (1):	Comparison of	frictional fit	test results	(mean± SD)
	between both gro	oups as functio	n of measurer	nent stage61
Table (2):	Comparison of t	total frictional	fit test result	s (mean± SD)
	as function of ex	perimental ma	terial groups.	63

Introduction

The treatment of a distal extension cases removable partial denture (Kennedy's Class I and II) represent a challenging case. The best treatment modality for restoring such case is implant supported prosthesis, despite it is not feasible option in some cases either due to lack of sufficient bone or economic reasons. thus, a castable removable partial denture is mostly preferred. (1)

Removable partial dentures are considered as a conservative and economical treatment approach to restore missing teeth in partially edentulous patients, enhancing their quality of life. However, conventional techniques are complicated and time-consuming. To improve the patients satisfaction aesthetically and functionally, recent materials and techniques of dentures construction are developed. (2)

Telescopic systems are used to retain removable dentures in patients with few remaining teeth. It is considered an ideal treatment approach when fixed treatment cannot be used as result of compromised or unfavorable general health condition. Double crown retained partial dentures are proven to be effective rehabilitation method for decreased residual dentition because of improved patients' satisfaction and long-term durability. (4)

Double crown systems are composed of inner crown (primary crown) and an outer crown (secondary crown). The primary crown will function as a male part and is tightly cemented on the abutment tooth or implant, the secondary crown function as a female part for the retaining the removable partial denture. (4)

Usually,the combination of materials in telescopic retained RPDs comprises a metal-metal, zirconia-metal, or metal-polymer contact, that possess

different surface wear patterns thus, varying resistance to repetitive removal-insertion cycles. (5)

Precise milling of inner and outer crowns has been frequently applied with the introduction of computer aided design (CAD) and computer-aided manufacturing (CAM) technologies. Accordingly, additional materials for primary and secondary crowns as zirconia (ZrO2), titanium, or polyether ether ketone (PEEK) have been introduced. Milling of the primary and secondary crowns from these materials decrease human factor and manufacturing costs. (5)

Zirconia (ZrO2) which is a highly resistant polycrystalline ceramic, characterized by acceptable mechanical properties, excellent optical characteristics, aesthetic appearance, and chemical resistance, which are combined with the outstanding biocompatibility proven by clinical studies. (3)

So, this study was carried out to investigate the effect of different primary crown materials on the frictional fit of telescopic retained partial dentures.

Review of literature

I- Impact of edentulism

Edentulism is described as the loss of permanent teeth and it is the outcome of a multifactorial processes including biologic factors (dental caries, periodontal disease, trauma and others) in addition to non-biologic factors correlated to dental procedures (access to care, patient preferences). (6, 7) Partial edentulism is defined as a dental arch in which one or more but not all natural teeth are missing. (8)

The clinical consequences of an edentulous stomatognathic system include the following factors: (1) functional and Para functional significances; (2) modification areas of support (natural dentition vs. artificial one); (3) alteration in morphologic face height, and temporo-mandibular joint (TMJ); (4) cosmetic changes and adaptive responses. (9)

Partial edentulism has great influence on Masticatory muscle action. Moreover, various methods have been employed to evaluate mastication involving subjective and objective methods. Wide range of functional and oral health—related quality of life (OHRQoL) outcomes are utilized to measure the efficiency of any prosthetic treatment and investigate the effect of therapy on the recipients. The OHRQoL are evaluated by standardized questionnaires as the Oral Health Impact Profile (OHIP-14). Maximum bite force (MBF) is proven to be a key factor of masticatory function and masseter muscle thickness considered to be a major factor influencing the bite force. (10)

Edentulous people face difficulty in chewing foods that are hard or have tough texture, despite wearing well-made dentures. Since the Chewing movements are produced by a central pattern generator in brain stem. The patterns of the rythmatic muscular activity are modified constantly by sensory