

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

The Use of Lung Ultrasound in the Diagnosis of Weaning-Induced Pulmonary Oedema in Mechanically Ventilated Patients

Thesis

Submitted For Partial Fulfillment of Master Degree in Master Degree in Intensive Care

By

Mohammed Atef Mohammed Abd El-Gileel

MBBCh, 2013, Faculty of Medicine, Alexandria University

Under supervision of

Prof. Dr. Diaa Abd El-khalek Akl

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Dr. Mona Refaat Hosny

Professor of Anesthesia, Intensive care and Pain management Faculty of Medicine, Ain Shams University

Dr. Ahmed Abd El-dayem Abd El-hak

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Diaa Abd El-khalek Akl,** Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Mona Refaat Hosny**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Abd El-dayem**Abd El-hak, Lecturer of Anesthesia, Intensive Care and Pain

Management, Faculty of Medicine, Ain Shams University, for his great

help, active participation and guidance.

Mohammed Atef

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Study	3
Review of Literature	4
Patient and Methods	86
Results	92
Discussion	134
Summary	146
Conclusion	
Refrences	
Arabic Summary	

List of Abbreviations

Abb.	Full term		
A/C	Assisted control ventilation		
ACE	Angiotensin-converting enzyme		
AGNB	Aerobic gram negative bacteria		
ARDS	Acute respiratory distress syndrome		
ATP	Adenosine triphosphate		
BAL	Broncho-alveolar lavage		
BNP	B-type natriuretic peptide		
CFU	Colony forming unit		
C _L T	Compliance of the lungs and thorax		
CNS	Central nervous system		
COPD	Chronic obstructive pulmonary disease		
CPAP	Continuous positive airway pressure		
CPIS	Clinical pulmonary infection score		
DVT	Deep venous thrombosis		
ECMO	Extra-corporeal membrane oxygenation		
EELV	End expiratory lung volume		
EILV	End inspiratory lung volume		
EVLW	Extravascular lung water		
GIT	Gastrointestinal tract		
H2RA	Histamine 2 receptor antagonist		
HAP	Hospital acquired pneumonia		
	High frequency oscillatory ventilation		
IE	Inspiratory to expiratory ratio		
	Intensive care unit		
ITP	Intra thoracic pressure		
IVAC	Infection - related ventilator - associated		
	complications		
LV	Left ventricle		
LVEDP	Left ventricular end-diastolic pressure		

List of Abbreviations Cont...

Abb.	Full term
MDR	Multidrug resistant
	Middle East respiratory syndrome
	Methicillin resistant staphylococcus aureus
NIV	Noninvasive ventilation
PA	Pulmonary artery
PaCO2	Carbon dioxide arterial pressure
Palv	Alveolar pressure
PaO2	Oxygen arterial pressure
PAOP	Pulmonary artery occlusion pressure
Pap	Pulmonary artery pressure
PCT	Procalcitonin
PCV	Pressure controlled ventilation
P _{Dmax}	Maximal voluntary Trans-diaphragmatic
	pressure
P _{Dtidal}	Trans-diaphragmatic pressure change during inspiration
PEEP	Positive end expiratory pressure
	Passive leg raising
PMCF	filling pressure
P _{MSF}	Mean systemic filling pressure
P _{PL}	Pleural pressure
P _{PV}	Pulmonary venous pressure
P _{RA}	.Right atrial pressure
PSB	Protected specimen brush
PSV	Pressure support ventilation
PTI	Pressure time index
R_{aw}	Airway resistance
RR	Respiratory rate
RV	Right ventricle

List of Abbreviations Cont...

Abb.	Full term
RVR	Resistance of venous return
	Severe acute respiratory syndrome
	Spontaneous awakening trials
	Spontaneous breathing trial
	Central venous oxygen saturation
	Selective decontamination of digestive tract
S11/1 V	Synchronized Intermittent Mandatory Ventilation
SvO ₂	Mixed venous oxygen saturation
	Tissue Doppler imaging
T _i /T _{tot}	Fraction of the ventilator cycle spent in
	inspiration
Ti	Inspiratory time
	Trans pulmonary
TTE	Transthoracic echocardiography
V	Relaxation volume
VA	Alveolar ventilation
VAC	Ventilator associated conditions
VAE	Ventilator associated events
VAP	Ventilator associated pneumonia
VCO2	Carbon dioxide production
VCV	Volume controlled ventilation
$V_D \ldots \ldots$	Dead space ventilation.
VIDD	Ventilator-induced diaphragm dysfunction
VILI	Ventilator induced lung injury
V_{02}	Oxygen consumption
VT	Tidal volume
WOB	Work of breathing
XDR	Extremely drug resistant

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between the three groups regarding age and sex	
Table (2):	Comparison between the three groups regarding comorbidities	
Table (3):	Comparison between the three groups regarding BP	
Table (4):	Comparison between the three groups regarding HR, RR and T	
Table (5):	Comparison between the three groups regarding SaO2, and PH	studied
Table (6):	Comparison between the three groups regarding Po2 and Pco2	
Table (7):	Comparison between the three groups regarding Hco3	
Table (8):	Comparison between the three groups regarding WBCs, Plt, II hemoglobin level	NR and
Table (9):	Comparison between the three groups regarding RBS	studied
Table (10):	Comparison between the three groups regarding Ur and Cr	
Table (11):		studied
Table (12):	Comparison between the three groups regarding SGOT and SGPT	
Table (13):	Comparison between the three groups regarding CRP	studied
Table (14):	Comparison between the three groups regarding TPP and EF	

List of Tables Cont...

Table No.		Title		Page N	10.
Table (15):	Comparison groups regard				. 127
Table (16):	Comparison groups regard				. 129
Table (17):	Sensitivity, s in predict suc		•		. 131
Table (18):	Sensitivity, s in predict WI	- •	•		. 133

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Conceptual relationship ventilatory muscle demands (left balance) and capabilities (right balance)	t side of side of
Figure (2):	Schematic representation of the between the systemic venous return which remains constant, to ventricular (LV) function curve moves with changing intra	rn curve, he left e which
Figure (3):	pressure (ITP) during breathing Main mechanisms potentially involved the development of weaning-in- pulmonary edema	37 volved in nduced
Figure (4):	Workup to detect the cardiovascul of weaning failure: a general appro	ar origin
Figure (5):	Pharmacological treatments	
Figure (6):	Comparison between the three group regarding age and sex	
Figure (7):	Comparison between the three group regarding Comorbidities	studied
Figure (8):	Comparison between the three group regarding BP	studied
Figure (9):	Comparison between the three group regarding HR, RR and temperature	
Figure (10):	Comparison between the three group regarding SaO2, RBS and Pl	studied
Figure (11):	Comparison between the three group regarding Po2 and Pco2	studied
Figure (12):	Comparison between the three group regarding Hco3	studied

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (13):	Comparison between the three group regarding WBCs, Plt and INF	
Figure (14):	Comparison between the three group regarding Hb level	
Figure (15):	Comparison between the three group regarding RBS	
Figure (16):	Comparison between the three group regarding Ur and Cr	
Figure (17):	Comparison between the three group regarding Na and K	studied
Figure (18):	Comparison between the three group regarding SGOT and SGPT	studied
Figure (19):	Comparison between the three group regarding CRP	studied
Figure (20):	Comparison between the three group regarding TPP and EF	studied
Figure (21):	Comparison between the three group regarding Before SBT and at of SBT	studied the end
Figure (22):	Comparison between the three group regarding B-lines (lung U/S).	studied
Figure (23):	ROC curve to predict the ser specificity and accuracy of B-line in the successful weaning.	sitivity, predict
Figure (24):	ROC curve to predict the ser specificity and accuracy of B-line in wipo	predict
	11 TP ~	100

Introduction

The development of modern medicine has imposed a new approach both in anesthesiology and in intensive care. Key features of the critically ill patient are severe respiratory, cardiovascular neurological derangements, or reflected combination, in abnormal physiological observations. All these changes converge towards the establishment of pulmonary or extra-pulmonary respiratory failure requiring mechanical ventilatory support. In the current conception, mechanical ventilation does not represent curative method for respiratory pathology, however, represents a bridge therapy ensuring the rest and preservation of respiratory muscles, improves gas exchange and assists in maintaining a normal pH until the recovery of the patient (1).

Oxygen delivery impairment and hypoxia were the most important targets in respiratory management for decades. Mechanical ventilation supports gas exchange, maintains acid-base balance, and alleviates the work of breathing associated with an acute pulmonary or systemic injury, without being considered a unimodal treatment for acute respiratory failure⁽¹⁾. It represents only a small part of a complex life support strategy related to etiological treatment, sedation management,

minimizing complications, avoiding ventilator associated pneumonia and sarcopenia

An important goal in the early phase of mechanical ventilation is adequate sedation with or without muscular blockade, to avoid "fighting with the ventilator"; lungprotective ventilation can be aided by using neuromuscular blockers⁽¹⁾. Patient-ventilator desynchronizes were frequently associated with poor outcomes (2).

Prolonged mechanical ventilation injures the respiratory muscles and the diaphragm. Ventilator-induced diaphragm dysfunction (VIDD) is a pathological condition that occurs in critically ill patients secondary to diaphragm inactivity, leading to its rapid atrophy and contractile dysfunction (1, 3). VIDD occurrence in mechanical ventilated patients represents a challenge for intensivists, due to difficulties related to weaning from the ventilator. After years of research in this field, muscle protective ventilation strategies represents the best choice for maintaining optimal levels of inspiratory muscle effort and preventing patient-ventilator desynchronizes (1, 3).