

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

LATERAL TORSIONAL BUCKLING OF STEEL DELTA FLANGE GIRDERS

By

Randa Atef Hassan Ahmed Ismail

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

LATERAL TORSIONAL BUCKLING OF STEEL DELTA FLANGE GIRDERS

By

Randa Atef Hassan Ahmed Ismail

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Prof. Dr. Hazem Mostafa Ramadan Prof. Dr. Sherif Saleh Safar

Professor of Steel Structures and Bridges Structural Engineering Department Faculty of Engineering, Cairo University Professor of Steel Structures and Bridges Structural Engineering Department Faculty of Engineering, Cairo University

LATERAL TORSIONAL BUCKLING OF STEEL DELTA FLANGE GIRDERS

By

Randa Atef Hassan Ahmed Ismail

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Hazem Mostafa Ramadan Thesis Main Advisor

Prof. Dr. Sherif Saleh Safar Advisor

Prof. Dr. Sherif Ahmed MouradInternal Examiner

Prof. Dr. Ahmed Abd El-Salam El-Serwi External Examiner

Professor of Steel Structures and Bridges, Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 Engineer's Name: Randa Atef Hassan Ahmed Ismail

Date of Birth: 06/07/1994 **Nationality:** Egyptian

E-mail: Randa-atef@hotmail.com

Phone: 01114444667

Address: Sheikh Zayed, Giza, Egypt

Registration Date: 1/10/2017 **Awarding Date:** / /2022

Degree: Master of Science **Department:** Structural Engineering

Supervisors:

Prof. Dr. Hazem Mostafa Ramadan

Prof. Dr. Sherif Saleh Safar

Examiners:

Prof. Dr. Hazem Mostafa Ramadan (Thesis Main Advisor)

Prof. Dr. Sherif Saleh Safar (Advisor)

Prof. Dr. Sherif Ahmed Mourad (Internal Examiner)
Prof. Dr. Ahmed Abd El-Salam El-Serwi (External Examiner)

- Faculty of Engineering, Ain Shams University

Thesis Title:

Lateral Torsional Buckling of Steel Delta Flange Girders

Key Words:

Lateral torsional buckling, delta stiffeners, finite element, non-linear, delta flange girders.

Summary:

This research is mainly concerned with the effect of delta stiffeners on the lateral torsional buckling (LTB) capacity of I-sections by performing non-linear buckling analysis using finite element modeling on ordinary I-beams and on delta flange girders; after verifying the modeling techniques with previous tests. The effect of different parameters such as: the width of the flange included between the delta stiffeners with respect to the total width of the flange, the height of the web included between the delta stiffeners and the plate flange as well as the thickness of the delta stiffeners is taken into consideration to determine the optimum configurations for increasing the LTB capacity of the sections. In addition to that, the provisions explained by different codes are compared to the results from the finite element modelling to determine the reliability of these codes in calculating the LTB capacity of delta flange girders.

Disclaimer

I hereby declare that this thesis in my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Randa Atef Hassan Ahmed Ismail Date: //2022

Signature:

Dedication

This thesis is dedicated to my beloved father's soul. He has always been there for me; encouraging, motivating and guiding me through every aspect of my life. He was and will always remain my role model, main supporter and best friend and without him I would have achieved nothing. All I ever worked for was to make him proud.

Acknowledgements

First and foremost, I thank ALLAH, the almighty and the most gracious.

I want to thank all those, who helped me with their knowledge and experience. I will always appreciate their efforts. I would like to thank Prof. Hazem Mostafa Ramadan for his continuous support and guidance and for helping me get through with my work. He was always there every step of the way and for that I owe him a lot. I also want to thank Prof. Sherif Saleh Safar for his valuable remarks and opinions; I really appreciate it.

I want to deeply thank my dear mother and siblings for their continuous support, patience and motivation and for always being there for me. I also want to thank my best friends and sisters by choice who endured and supported me through everything.

Randa Atef Hassan Ahmed Ismail

Table of Contents

TABLE	E OF CONTENTS	iv
	F TABLES	
LIST O	F FIGURES	vii
ABSTR	ACT	xi
CHAP	TER 1: INTRODUCTION	1
1.1.	GENERAL	1
1.2.	PROBLEM STATEMENT	1
1.3.	RESEARCH OBJECTIVES	2
1.4.	RESEARCH QUESTIONS	3
1.5.	RESEARCH METHODOLOGY	4
1.6.	THESIS LAYOUT	
CHAP	TER 2: LITERATURE REVIEW	6
2.1.	INTRODUCTION	6
2.2.	ADDING VERTICAL AND HORIZONTAL STIFFENERS	6
2.3.	INCLINED STIFFENERS	8
2.4.	HOLLOW FLANGE GIRDERS	9
2.5.	DELTA FLANGE STIFFENERS	12
CHAP	TER 3: FINITE ELEMENT MODELLING	16
3.1.	INTRODUCTION	16
3.2.	FINITE ELEMENT MODELS DESCRIPTION	16
3.3.	ANALYTICAL STUDY VALIDATION	
3.3	.1. Description of studied beam	19
3.3	.2. Validation results for analytical study case	22
3.4.	EXPERIMENTAL STUDY VALIDATION	
3.4	.1. Description of tested specimen	24
	.2. Validation results for experimental study case	
CHAP	TER 4: PARAMETRIC STUDY	28
4.1	INTRODUCTION	
4.2	DESCRIPTION OF THE STUDIED GIRDERS	28
4.2	.1. Initial I-sections	29
4.2	6	
4.3	COMPARISON OF EFFECTS OF DIFFERENT PARAMETERS C	F DELTA
STIF	FENERS	33
4.3	.1 Compact I-section	34
4.3	.2 Non-Compact I-section	57
4.3	.3 Slender I-section	80
4.3		
4.3		
CHAP	TER 5: CODES AND COMPARISONS	106
5.1	INTRODUCTION	106

5.2	DESIGN EQUATIONS	106
5.2	2.1 AISC (2016)	106
5.2	2.2 EC3 (2005)	109
5.2	2.3 ECP-LRFD (2007)	111
5.3	COMPARISON OF CODES WITH FEM	111
5.4	GENERAL COMMENTS	124
CHAP	TER 6: CONCLUSIONS & RECOMMENDATIONS	125
6.1	SUMMARY AND CONCLUSIONS	125
6.2	RECOMMENDATIONS FOR FUTURE WORK	126
REFE	RENCES	128

List of Tables

Table 3.1 Tested beams dimensions and properties (Dux & Kitipornchait, 1983)	25
Table 4.1 Local buckling limits used for flanges and web according to the Egyptian co	de30
Table 4.2 Local buckling limits used for delta stiffeners according to the Egyptian code	e31
Table 4.3 Parameters used for the tested DFGs	31
Table 4.4 Delta stiffeners' thicknesses used	32
Table 5.1 Recommended values for imperfection factors for LTB curves (EC3, 2005)	110
Table 5.2 Recommended values for LTB curves for cross-sections for general case	e (EC3,
2005)	110
Table 5.3 Recommended values for LTB curves for cross-sections for rolled sect	ions or
equivalent welded sections case (EC3, 2005)	110

List of Figures

Figure 1.1 Hollow flange girders (Dong and Sause, 2009)	2
Figure 1.2 Delta flange girder (El Masry, 2017)	
Figure 2.1 Vertical and horizontal stiffeners (Anupoju, 2019)	
Figure 2.2 Inclined stiffeners (Yang and Lui, 2012)	
Figure 3.1 DFG mesh	
Figure 3.2 Lateral torsional buckling mode from eigenvalue buckling analysis	17
Figure 3.3 ANSYS Workbench project schematic showing analysis steps	
Figure 3.4 Boundary conditions applied (El Masry, 2017)	
Figure 3.5 Remote point where concentrated moment is applied (El Masry, 2017)	
Figure 3.6 Parameter's indications (El Masry, 2017)	
Figure 3.7 Material stress- stain curve as defined in the analytical verification model	20
Figure 3.8 Residual stress pattern proposed by El Masry (2017)	21
Figure 3.9 Comparison between El Masry's results and the verification models results v	with
and without residual stresses for Delta Girder "3"	23
Figure 3.10 Effect of residual stresses on the resulting normal stresses	23
Figure 3.11 Test loading arrangements (Dux & Kitipornchait, 1983)	24
Figure 3.12 Material properties for the tested beams (Dux & Kitipornchait, 1983)	25
Figure 3.13 Stress strain curve for flanges	25
Figure 3.14 Stress strain curve for web.	25
Figure 3.15 Cross section of loading box (Dux & Kitipornchait, 1983)	26
Figure 3.16 Lateral torsional buckling mode in verification model	26
Figure 4.1 Material stress-strain curve as defined in ANSYS model	29
Figure 4.2 DFGs parameters definition	
Figure 4.3 Comparison between normalized flexural capacities of DFGs of compact bas	
sections with constant hd=0.33h	
Figure 4.4 Comparison between K factor of DFGs of compact base I-sections with cons	
h _d =0.33h	
Figure 4.5 Comparison between normalized flexural capacities of DFGs of compact bas	
sections with constant h _d =0.25h	
Figure 4.6 Comparison between K factor of DFGs of compact base I-sections with cons	
h _d =0.25h	
Figure 4.7 Comparison between normalized flexural capacities of DFGs of compact bas	
sections with constant h _d =0.15h	
Figure 4.8 Comparison between K factor of DFGs of compact base I-sections with cons	
h _d =0.15h	
Figure 4.9 Comparison between normalized flexural capacities of DFGs of compact bas	
sections with constant b _d =b	
Figure 4.10 Comparison between K factor of DFGs of compact base I-sections with cons	
b _d =b	
Figure 4.11 Comparison between normalized flexural capacities of DFGs of compact bas	
sections with constant b _d =0.83b	44
Figure 4.12 Comparison between K factor of DFGs of compact base I-sections with cons	
b _d =0.83bFigure 4.13 Comparison between normalized flexural capacities of DFGs of compact bas	
sections with constant b _d =0.67btable 1.67b	
Figure 4.14 Comparison between K factor of DFGs of compact base I-sections with cons	
b_d =0.67b	
1/11-1/11/11/11/11/11/11/11/11/11/11/11/	· · F /

Figure 4.15 Comparison between normalized flexural capacities of DFGs of compact base I-
sections with constant b _d =0.5b
Figure 4.16 Comparison between K factor of DFGs of compact base I-sections with constant b_d =0.5b49
Figure 4.17 Comparison between normalized flexural capacities of DFGs of compact base I-
sections with slender stiffeners51
Figure 4.18 Comparison between K factor of DFGs of compact base I-sections with slender stiffeners
Figure 4.19 Comparison between normalized flexural capacities of DFGs of compact base I-
sections with non-compact stiffeners53
Figure 4.20 Comparison between K factor of DFGs of compact base I-sections with non-
compact stiffeners
Figure 4.21 Comparison between normalized flexural capacities of DFGs of compact base I-
sections with compact stiffeners55
Figure 4.22 Comparison between K factor of DFGs of compact base I-sections with compact stiffeners
Figure 4.23 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant hd=0.33h58
Figure 4.24 Comparison between K factor of DFGs of non-compact base I-sections with constant h_d =0.33 h
Figure 4.25 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant h _d =0.25h
Figure 4.26 Comparison between K factor of DFGs of non-compact base I-sections with
constant h_d =0.25h61
Figure 4.27 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant h _d =0.15h
Figure 4.28 Comparison between K factor of DFGs of non-compact base I-sections with
constant h_d =0.15h63
Figure 4.29 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant b _d =b
Figure 4.30 Comparison between K factor of DFGs of non-compact base I-sections with
constant b _d =b
Figure 4.31 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant b _d =0.83b
Figure 4.32 Comparison between K factor of DFGs of non-compact base I-sections with
constant b _d =0.83b
Figure 4.33 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant b _d =0.67b
Figure 4.34 Comparison between K factor of DFGs of non-compact base I-sections with
constant b_d =0.67 b
Figure 4.35 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with constant b _d =0.5b71
Figure 4.36 Comparison between K factor of DFGs of non-compact base I-sections with
constant b_d =0.5b
Figure 4.37 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with slender stiffeners
Figure 4.38 Comparison between K factor of DFGs of non-compact base I-sections with
slender stiffeners
Figure 4.39 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with non-compact stiffeners

Figure 4.40 Comparison between K factor of DFGs of non-compact base I-sections with non-
compact stiffeners
Figure 4.41 Comparison between normalized flexural capacities of DFGs of non-compact
base I-sections with compact stiffeners
Figure 4.42 Comparison between K factor of DFGs of non-compact base I-sections with
compact stiffeners
Figure 4.43 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant hd=0.33h81
Figure 4.44 Comparison between K factor of DFGs of slender base I-sections with constant
$h_d = 0.33h$ 82
Figure 4.45 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant h _d =0.25h83
Figure 4.46 Comparison between K factor of DFGs of slender base I-sections with constant
h _d =0.25h84
Figure 4.47 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant h _d =0.15h85
Figure 4.48 Comparison between K factor of DFGs of slender base I-sections with constant
hd=0.15h86
Figure 4.49 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant b _d =b88
Figure 4.50 Comparison between K factor of DFGs of slender base I-sections with constant
bd=b89
Figure 4.51 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant b _d =0.83b90
Figure 4.52 Comparison between K factor of DFGs of slender base I-sections with constant
$b_d = 0.83b$
Figure 4.53 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant b _d =0.67b92
Figure 4.54 Comparison between K factor of DFGs of slender base I-sections with constant
bd=0.67b93
Figure 4.55 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with constant b _d =0.5b94
Figure 4.56 Comparison between K factor of DFGs of slender base I-sections with constant
b _d =0.5b95
Figure 4.57 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with slender stiffeners
Figure 4.58 Comparison between K factor of DFGs of slender base I-sections with slender
stiffeners98
Figure 4.59 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with non-compact stiffeners
Figure 4.60 Comparison between K factor of DFGs of slender base I-sections with non-
compact stiffeners
Figure 4.61 Comparison between normalized flexural capacities of DFGs of slender base I-
sections with compact stiffeners
Figure 4.62 Comparison between K factor of DFGs of slender base I-sections with compact
stiffeners
Figure 4.63 Stress distribution in case of slender I-beam with delta stiffeners of very large
thicknesses
Figure 4.64 Stress distribution in case of decreasing delta stiffeners thicknesses
Figure 4.65 LTB zones according to AISC (2016)