

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

TESTING AUTONOMOUS VEHICLES USING REINFORCEMENT LEARNING TO GENERATE FAILURE SCENARIOS IN COMPLIANCE WITH STANDARDIZED TESTS

By

Nagy Mohamed Salah Mohamed Ali Abotaleb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

TESTING AUTONOMOUS VEHICLES USING REINFORCEMENT LEARNING TO GENERATE FAILURE SCENARIOS IN COMPLIANCE WITH STANDARDIZED TESTS

By Nagy Mohamed Salah Mohamed Ali Abotaleb

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Omar Ahmed Ali Nasr

.....

Associate Professor Electronics and Communications Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

TESTING AUTONOMOUS VEHICLES USING REINFORCEMENT LEARNING TO GENERATE FAILURE SCENARIOS IN COMPLIANCE WITH STANDARDIZED TESTS

By Nagy Mohamed Salah Mohamed Ali Abotaleb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Thesis Main Advisor
Internal Examiner
External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer:** Nagy Mohamed Salah Mohamed Ali Abotaleb

Date of Birth: 28/6/1993 **Nationality:** Egyptian

E-mail: nagymohamed1@hotmail.com

Phone: +20 1112353335

Address: Bld.9, 306St., New Maadi, Cairo

Registration Date: 1/3/2018 **Awarding Date:** -/-/2021

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors: Dr. Omar Ahmed Ali Nasr

Prof. Dr. Hanan A. Kamal (Internal examiner)
Dr. Sameh A. Ibrahim (External examiner)

Associate Professor

Faculty of Engineering, Ain Shams University

Title of Thesis:

Testing Autonomous Vehicles Using Reinforcement Learning To Generate Failure Scenarios In Compliance With Standardized Tests

Key Words:

Artificial Intelligence; Reinforcement Learning; Autonomous Vehicles; Deep Reinforcement Learning;

Summary:

This thesis proposes a design for a reinforcement learning framework to test specific autonomous vehicle components according to standardized tests of EuroNCAP. It shows how reinforcement learning algorithms are being used in real-world applications, in different testing domains outside the autonomous vehicle testing, and how to make use of reinforcement learning algorithms for autonomous vehicle testing rather than the popular topic of usage in driving autonomous vehicles. In addition, it presents a complete reinforcement learning formulation for the framework including environment description, reward function design, model training, and model testing procedures. Moreover, the proposed framework was able to generate automatic failure scenarios that were applied on autonomous vehicles covering two EuroNCAP scenarios; approaching a stationary car and approaching a slower car. The proposed framework controls parameters such as velocity, position and time, and generates more accurate failure scenarios to happen in real-life situations. Our failure scenarios are generated using q-learning and deep reinforcement learning algorithms causing real accidents for the designed scenarios. Hence, our reinforcement learning framework proves its validity to generate failure scenarios for autonomous vehicle components improving the safety of autonomous vehicle components and reducing both the costs and time required for testing autonomous vehicle components.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Nagy Mohamed Salah Mohamed Ali Abotaleb	Date:
Signature:	

Acknowledgements

In the name of Allah the most merciful the most gracious; Peace be upon Prophet Mohamed, his family, and his companions. First of all, I would like to thank Allah for his support. Nothing in my life could have been accomplished without Allah's support and willingness. Allah's continuous guidance is always my light in my way everywhere.

Second of all, I really appreciate the support of my family, my father, mother, sister, and brother. They were and are always supportive of me, and always pushed me further towards my completion of this master's degree. My father and mother have always been investing in my educational life and were the main reason for my continuous performance improvement in my education and life.

Third of all, I would like to write a special thanks to Dr.Omar Nasr, my thesis supervisor, who was supportive and collaborative to the ultimate extend. Dr.Omar has helped me a lot with the completion of this thesis. This thesis would not have been completed without the support and collaboration of Dr.Omar. I will always be grateful to be in contact with you. Thank you Dr.Omar for your supervision and support.

Forth of all, I would like to thank Dr.Ahmed Salab who was a key driver for my learning and exploration of reinforcement learning topics, and his discussions with me have helped me evolve during the investigation and research phase of this thesis.

Fifth of all, Having role models is a key driver for continuous improvement in life. I would like to thank my first director Dr.Eman El-Mandouh who is a role model in both the educational and business worlds, Haytham Shoukry, and Khaled Nouh who were shaping my business and thinking about work-life since I started working with them in my first job experience, and all my work colleagues who were good environment to surround yourself to grow educationally and professionally.

Last but not least, I would like to thank my friends one by one who was supportive to me during my life. I would like to explicitly thank Mazen Obied who was my friendly mentor during this thesis journey.

Finally, I would like to thank Allah again for all his blessings and guidance in my life.

Table of Contents

וע	sciair	ner	1
A	cknov	vledgements	ii
Ta	ble o	f Contents	iii
Li	st of '	Tables	vii
Li	st of]	Figures	viii
Li	st of S	Symbols and Abbreviations	xi
Li	st of]	Publications	xii
Αl	ostrac	et :	xiii
1	INT	RODUCTION	xiv
	1.1	Autonomous Vehicle Testing	1
	1.2	EuroNCAP [8, 9]	3
	1.3	Carla Simulator [10]	3
	1.4	Thesis Contribution	4
	1.5	Thesis Organization	5
2	REI	NFORCEMENT LEARNING ALGORITHMS IN LITERATURE	6
	2.1	Reinforcement Learning Problem Structure and Components	8
		2.1.1 Agent	9
		2.1.2 Environment	9
		2.1.3 Reward	10
		2.1.4 Observation State	10
	2.2	Q Learning [14, 15]	10
	2.3	Deep Reinforcement Learning [16]	12
3	TES	STING USING REINFORCEMENT LEARNING IN LITERATURE	17
	3.1	Testing Anti-Ransomware with Reinforcement Learning [17]	18

	3.1.1	Reinforc	ement Learning Formulation	18
		3.1.1.1	Action Space	18
		3.1.1.2	Learning Algorithm	18
		3.1.1.3	Reward Function	19
	3.1.2	Results		20
3.2	Genera	ating Perfe	ormance Testing Pattern using Reinforcement Learning	
	[18, 26	5]		21
	3.2.1	Reinforc	ement Learning Formulation	21
		3.2.1.1	Action Space	23
		3.2.1.2	State Space	23
		3.2.1.3	Learning Algorithm	23
		3.2.1.4	Reward Function	24
	3.2.2	Results		24
3.3	Penetra	ation Testi	ing using Reinforcement Learning [20, 21]	26
	3.3.1	Reinforc	ement Learning Formulation	26
		3.3.1.1	State Space	26
		3.3.1.2	Action Space	27
		3.3.1.3	Learning Algorithm	27
		3.3.1.4	Reward Function	28
	3.3.2	Results		28
3.4	Test Ca	ases Genei	ration using Reinforcement Learning for Software Testing	
	[22] .			31
	3.4.1	Reinforc	ement Learning Formulation	31
		3.4.1.1	State Space	31
		3.4.1.2	Action Space	31
		3.4.1.3	Learning Algorithm	32
		3.4.1.4	Reward Function	33
	3.4.2	Results		33
3.5	Test Ca	ases Gener	ration using Reinforcement Learning for Hardware Verifi-	
	cation[[24]		34
	3.5.1	Reinforc	ement Learning Formulation	34
		3.5.1.1	State Space	34

			3.5.1.2	Action Space	35
			3.5.1.3	Learning Algorithm	35
			3.5.1.4	Reward Function	35
		3.5.2	Results		35
	3.6	Summ	ary		37
4	AUI	ΓONOM	10US VEH	HICLE TESTING USING REINFORCEMENT LEARN-	=
	ING	IN LI	FERATUR	RE	38
	4.1	Gener	ating Failu	re Scenarios for Autonomous Vehicles [1]	40
		4.1.1	Reinforce	ement Learning Formulation	40
			4.1.1.1	Action Space	40
			4.1.1.2	Learning Algorithm	40
			4.1.1.3	Reward Function	41
		4.1.2	Results		41
		4.1.3	Criticism	of proposed approach	42
	4.2	Gener	ating Scena	arios for Lane Switching Systems using Reinforcement	
Learning [29]				44	
		4.2.1	Reinforce	ement Learning Formulation	44
			4.2.1.1	State and Action Spaces	44
			4.2.1.2	Learning Algorithm	45
			4.2.1.3	Reward Function	45
		4.2.2	Results		46
	4.3	Other	methods fo	or automated testing of AVs	47
		4.3.1	Estimatin	ng the Possibility of Street Accidents [30]	47
		4.3.2	Generatir	ng Unpredictable Street Scenarios from Available Streets	
			Data-sets	[31]	47
	4.4	Summ	ary		48
5	ТНІ	E PROP	OSED FR	AMEWORK FOR AUTONOMOUS VEHICLE TEST-	
	ING	SUSING	G REINFO	DRCEMENT LEARNING	49
	5.1	Carla	Simulator		50
		5.1.1	Autopilot	t System [34]	50
		5.1.2	Environn	nent Selection	51

5.2 Approaching a Stationary Car Test			53	
		5.2.1	Reinforcement Learning Formulation for Approaching a Station-	
			ary Car Test	53
		5.2.2	Training Reinforcement Learning Model for Approaching Sta-	
			tionery Car Scenario	56
		5.2.3	A look into the Q-Learning Model Training for Approaching	
			Stationery Car Test	57
	5.3	Appro	aching a Slower Car Test	60
		5.3.1	Simulation Environment Description for Approaching a Stationary	
			Car	60
		5.3.2	Vehicle Agent Class Built to Track the Simulation	62
		5.3.3	Reinforcement Learning Formulation for Approaching a Slower	
			Car Test	65
			5.3.3.1 Actions	66
			5.3.3.2 Episode Description	68
			5.3.3.3 Reward Function	69
		5.3.4	Deep Reinforcement Learning Model for Approaching Slower Car	70
6	THI	E RESU	ULTS AND DISCUSSION OF THE OUTCOMES OF THE	
	PRO	POSE	D DESIGN	73
	6.1	Experi	iment (I) Approaching a Stationary Car Test Results	74
	6.2	Experi	iment (II) Approaching a Slowing Down Car Test Results	80
7	CO	NCLUS	SION AND FUTURE WORK	84
	7.1	Conclu	usion	85
	7.2	Future	e Work	86
Re	eferen	ices		87

List of Tables

3.1	Different ϵ selections and the generated workload for the reinforcement	
	learning model compared to normal performance testing approaches. [18]	25
3.2	A breakdown of the challenges that the RL model is trained on in [21]	27
3.3	The actions used to train the model in [21]	32
3.4	The benchmarking results of the trained model against various data sets.	
	[21]	33
3.5	The purpose of the components used in fig. 3.12 in the experiment pre-	
	sented in [24]	35
3.6	Comparison between RLG vs MTG models using a timestamp and cover-	
	age percentage. [24]	36
5.1	The criteria used to evaluate termination condition and return reward value.	55
5.2	The parameters used for training the Q Learning model for approaching a	
	stationary car test	57
5.3	State to action mapping for values available in matrix 5.2	59
5.4	The selection space for the parameters under reinforcement learning con-	
	trolled vehicle	66
5.5	Decoding reinforcement learning actions into effect on the controlled	
	parameters. (A) The effect of each action on parameters under control.	
	(B)The mapping of each action into delta changes on the parameters under	
	control	68
5.6	The reward function definition for approaching a slower car test	69

List of Figures

1.1	The statistics reported by AV's companies in the U.S. during 2018 [1]	
1.2	The types of sites used for AVs testing in the U.S. [2]	2
1.3	The aggregated star rating of EuroNCAP tests from 1997 to 2007 [9]	۷
2.1	An illustration of the three learning algorithms, unsupervised learning (on the left), supervised learning (in the middle), and reinforcement learning	
	(on the right) [11]	7
2.2	Reinforcement Learning Problem Components: Agent, Environment, Re-	
	ward, and State [12]	8
2.3	Example of training a reinforcement learning agent in an environment [13].	Ģ
2.4	DQN used for Atari2600 agent [16]	12
2.5	The DQN training algorithm[16]	14
2.6	The DQN training average score while training two models for Atari	
	games. [16]	14
2.7	The DQN's performance surpassed human performance in 29 out of 49	
	games supported by Atari2600 [16]	16
3.1	Reinforcement learning action space encoding [25]	19
3.2	Reinforcement learning action space encoding [25]	20
3.3	Reinforcement learning action space encoding [25]	20
3.4	The framework for performance testing with reinforcement learning [18].	22
3.5	The framework for performance testing with reinforcement learning [26].	22
3.6	The allowable actions to be taken by the agent [26]	23
3.7	The performance results of the model generated in [26]	25
3.8	The results of RL agent trained to penetrate network port hacking problem	
	in [21]	28
3.9	The results of RL agent trained to penetrate server hacking problem in [21].	29
3.10	The results of RL agent trained to penetrate website problem in [21]	29
3.11	The structure of the network used to train the model of unit test generation	
	in [23]	32

3.12	Directing Engine to achieve direct test generation [24]	34
3 13	The coverage results of the models built using reinforcement learning	٠,
3.13	versus benchmarking model MTG [24]	36
4.1	The actor-critic RL block diagram used [1]	41
4.2	The LG simulator scene for full density fog causing AV to stop [1]	42
4.3	The LG simulator scene for full density fog causing AV to stop [1]	43
4.4	The custom Q function used in [29]	45
4.5	The loss function vs. training episodes of the trained RL model to avoid	
	accidents during lane switching in [29]	46
4.6	The reward function vs. training episodes of the trained RL model in [29].	46
5.1	The components of traffic driver used to make a decision by motion planner	
	in Carla simulator	50
5.2	Examples of identifying the coordinate system in Carla's environments	52
5.3	(a) The test scenario starting a scene with the autonomous vehicle under	
	test and stationary reinforcement learning vehicle, (b) The objective of the	
	reinforcement learning model is to cause a failure in the autonomous vehicle.	54
5.4	A screenshot for the Carla simulator with the possible locations that the	
	reinforcement learning model can select from starting -6 till -13.5	56
5.5	An example of how the reinforcement learning components interact to-	
	gether to find the optimum location for crash occurrence	58
5.6	Approaching a slower car test scenario	60
5.7	Autonomous vehicle passes the test in case the safe distance is maintained	
	and no crashes occur	61
5.8	Autonomous vehicle fails to maintain a safe distance and crashes with the	
	slower car	61
5.9	Autonomous vehicle fails to maintain a safe distance and crashes with the	
	slower car	62
5.10	Four parameters are specified by the reinforcement learning model for the	
	test of approaching a slower car.	63