

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

USING PLANTS AND PLANT EXTRACTS AS MODIFIERES OF RUMEN FERMENTATION PROCESS IN LACTATING ANIMALS RATION

By

NADIA AHMED HUSSEIN SELIM

B.Sc. Agric. Sc. (Animal Production), Faculty of Agriculture, Cairo University, 1999 M.Sc. Agric. Sc. (Animal Production Department), Faculty of Agriculture, Cairo University, 2007

> A Thesis Submitted in Partial Fulfillment Of The Requirement for The Degree of

in
Agriculture Sciences
(Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

USING PLANTS AND PLANT EXTRACTS AS MODIFIERES OF RUMEN FERMENTATION PROCESS IN LACTATING ANIMALS RATION

By

NADIA AHMED HUSSEIN SELIM

B.Sc. Agric. Sc. (Animal Production), Faculty of Agriculture, Cairo University, 1999 M.Sc. Agric. Sc. (Animal Production Department), Faculty of Agriculture, Cairo University, 2007

This thesis for Ph. D. degree has been approved by:
Dr. Amr Ali El-Giziry Head Researches Emeritus of Animal Nutrition, Animal Production Research Institute (ARPI), Agricultural Research Center
Dr. Fouad Abd El-Aziz Salem Professor Emeritus of Animal Nutrition, Faculty of Agriculture, Ain
Shams University Dr. Nasr El-Sayed Yahia El-Bordeny
Professor of Animal Nutrition, Faculty of Agriculture, Ain Shams University

Date of examination: 20 / 11 / 2021

USING PLANTS AND PLANT EXTRACTS AS MODIFIERES OF RUMEN FERMENTATION PROCESS IN LACTATING ANIMALS RATION

By

NADIA AHMED HUSSEIN SELIM

B.Sc. Agric. Sc. (Animal Production), Faculty of Agriculture, Cairo University, 1999 M.Sc. Agric. Sc. (Animal Production Department), Faculty of Agriculture, Cairo University, 2007

Under the supervision of:

Dr. Hamdy, M. El-Sayed (Late)

Professor Emeritus of Animal Nutrition, Dept. of Animal Production, Faculty of Agriculture, Ain Shams University.

Dr. Nasr El-Sayed Yahia El-Bordeny

Professor of Animal Nutrition, Dept. of Animal Production, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Abd El- Kader Mahmoud Kholif

Professor Emeritus of Dairy Production, Dept. of dairy science National Research Center.

ABSTRACT

Nadia Ahmed Hussein Selim. Using plants and plant extracts as modifiers of rumen fermentation process in lactating animals ration. Unpublished of Ph.D. Thesis. Department of Animal Production, Faculty of Agriculture, University Ain Shams. 2022

The aim of this study was to investigate the effect of using two medicinal plants namely Marjoram (Origanummajorana L.) and Basil (Ocimumbasilicum L.) as a natural feed additives in dairy goats diets on lactiting animal production performance (quantity and quality).

This study included two experiments, the first experiment was designed to detect the effect of using five levels of the leaves and essential oils of Marjoram or Basil as a natural feed additive on ruminal fermentation, total gas production, ammonia nitrogen concentration, dry matter and cell wall contents (NDF and ADF) digestibility. Eleven experimental groups were used by In vitro batch culture technique. The basal diet be composed of 50% CFM, 50% alfalfa (control). The experimental treatments was control diet plus 5, 10, 15, 20 and 25 g or ml of Marjoram and Basil (powder or oil) / kg DM respectively. And the second experiment was to study the effect of adding basil or marjoram oils in rations as feed additives in rations of 30 Damascus goats on feed intake, nutrient digestibility, some parameters of blood or milk. The experimental treatments were: 50% CFM, 30% berseem clover, 20% rise straw (control), control diet plus 20 ml of Basil oil or Marjoram oil / kg DM.

The results indicated that there is no significant difference (P>0.05) between Marjoram or Basil leaves powder or oils in pH value, NDF digestibility and ADF digestibility at all different levels. Control group recorded highest value (35.51 mmol) in ammonia nitrogen concentrations compared with all treatments which showed insignificant decreased. The values of gas production decreased significantly (P<0.05) by adding Marjoram oils to diets versus control which recorded the highest value (128

ml). Dry matter degradability (DMD) showed significant increase (P<0.05) compared with the control group. The values of milk yield increased significantly (P<0.05) compared with the control group. From here we concluded that supplementation of Basil oils to diets had negative influence on ruminal fermentation parameters (short chain fatty acids (SCFAs), ammonia-N and total gas production). The Marjoram oil showed significantly superior on DM degradability, reduction total gas production, milk yield, fat corrected milk (FCM) 4% and energy corrected milk (ECM) compared to the Basil oil.

Keywords: Essential oil, Marjoram, Basil, Digestibility and Rumen Fermentation

ACKNOWLEDGEMENT

Thank Allah, the most gracious, beneficent and merciful for the help and guidance. I wish to express my sincere thanks, deepest gratitude and appreciation to the late **Prof. Dr. Hamdy Mohamed El- Sayed,** Professor of Animal Nutrition, Animal Production Department Faculty of Agriculture, Ain Shams University, for suggesting the problem, supervision, continued assistance and his guidance throughout the course of study and revision the manuscript of this thesis.

I offer my sincere appreciation and deepest gratitude to **Prof. Dr. Nasr El- Bordeny**, Professor of Animal Nutrition. Animal Production Department, Faculty of Agriculture, Ain Shams University, who followed the manuscript and gave me the benefit of his opinion and helped me with discussions.

I am so grateful to **Prof. Dr. Abd El- Kader Kholif,** Professor of Dairy Production, Dairy Science Department. National Research Center, for his valuable guidance and constructive suggestions and offering all facilities to complete this research.

Also many thanks to **Dr. Ahmed Mahmoud Abd El-Tawab**, Associate Professor of Dairy Production, Dairy Science Department, National Research Center for help and providing facilities which made this work possible.

Also great thanks extended to the staff members of the Department, of Animal Production, Faculty of Agriculture, Ain Shams University and the staff of Dairy Science Department, Research Laboratory of Animal production, National Research Center, for help and support.

Special deep appreciation is given to my mother, my husband Nady, my sister Dr. Nahed and my children Sama, Ahmed, Hana and Selim for their continuous encouragement and offering me the suitable atmosphere to complete this study.

CONTENTS

Title	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Effect of basil or oregano oils in the diets on animal	
performance	4
2.1.1. In vitro dry matter and organic matter digestibility	6
2.1.2. Gas production	6
2.1.3. Feed intake	8
2.1.4. Nutrients digestibility	8
2.1.5. Rumen fermentation	10
2.1.5.1. Ruminal pH	13
2.1.5.2. Ruminal ammonia nitrogen or ammonia	14
2.1.5.3. Ruminal TVFA's	16
2.1.6. Blood parameters	17
2.2. Effect of basil or oregano oils in the diets on milk	
production and composition	19
MATERIALS AND METHODS	21
3.1. In-vitro study	21
3.1.1. Experimental treatments	21
3.1.2. Samples analysis and gas production recording	23
3.1.3. Gas production calculation	24
3.2. In-vivo study	24
3.2.1. Digestibility and Lactation trails	24
3.2.1.1. Experimental animals	24
3.2.1.2. Experimental rations	24
3.2.1.3. Feeding management	25
3.2.2. Determination of digestion coefficients	26
3.2.3. Sampling of rumen liquor	27
3.2.4. Sampling of blood	27
3.2.5. Sampling of milk	27

3.2.6. Chemical analysis	28
3.2.6.1. Feedstuffs and feces analysis	28
3.2.6.2. Rumen liquor analysis	32
3.2.6.3. Blood serum analysis	32
3.2.6.4. Milk analysis	23
3.3. Statistical analysis	33
RESULTS AND DISCUSSION	34
4.1. In-vitro study	34
4. 1.1. Ruminal nutrients degradability	34
4.1.2. Ruminal fermentation parameters	40
4.1.3. Ruminal gas production	46
4.2- In vivo study	53
4.2.1. Feed intake and nutrients digestibility	53
4.2.2. Rumen fermentation parameters	55
4.2.2.1. pH value	56
4.2.2.2. Ammonia nitrogen	57
4.2.2.3. Total volatile fatty acids	57
4.2.3. Blood parameters	59
4.2.3.1. Serum glucose	59
4.2.3.2. Serum total protein	60
4.2.3.3. Serum albumin	60
4.2.3.4. Serum Globulin	61
4.2.3.5. Albumin / Globulin ratio	61
4.2.3.6. Serum urea	62
4.2.3.7. Triglycerides concentration	62
4.2.3.8. Cholesterol concentration	63
4.2.3.9. Serum transaminases	63
4.2.3.9.1. Aspartate aminotransferase	63
4.2.3.9.2. Alanin aminotransferase	64
4.2.4. Average body weight, milk yield and composition	65
4.2.4.1.Average body weight (kg)	66
4.2.4.2. Milk parameters	67

4.2.4.2.1 Milk yield	67
4.2.4.2.2 Fat corrected milk yield (FCM) 4%.	68
4.2.4.2.3 Total solid (TS)	68
4.2.4.2.4 Solids not fat (SNF)	68
4.2.4.2.5 Fat yield	68
4.2.4.2.6 Protein yield	68
4.2.4.2.7 Lactose yield	69
4.2.4.2.8 Ash yield	69
4.2.4.3. Milk Composition (%)	70
4.2.4.4. Milk efficiency	71
SUMMARY AND CONCLUSION	73
REFERENCES	79
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Chemical composition of CFM, alfalfa hay and total	
	mixed ration (% DM basis).	22
2	Chemical composition of CFM, berseem clover, rice	
	straw and basal diet (% DM basis).	25
3	Identified active compounds of essential oil of Basil or	
	Marjoram. extract by GC-MS analysis (%).	29
4	Effect of supplementing diet with different levels of	
	Marjoram on ruminal nutrients degradability (%).	35
5	Effect of supplementing diet with different levels of	
	Basil on ruminal nutrients degradability (%).	38
6	Effect of supplementing diet with different levels of	
	Marjoram on some ruminal fermentation parameters	41
7	Effect of supplementing diet with different levels of	
	Basil on some ruminal fermentation parameters.	44
8	Effect of supplementing diet with different levels of	
	Marjoram on ruminal gas production.	47
9	Effect of supplementing diet with different levels of	
	Basil on ruminal gas production.	50
10	Feed intake, nutrients digestibility of lactating	30
10	Damascus goats fed a diet supplemented with essential	
	oil of Basil or Marjoram	53
11	Rumen fermentation parameters of lactating Damascus	33
11	goats fed a diet supplemented with essential oil of Basil	
	or Marjoram	55
12	Blood chemistry of lactating Damascus goats fed a diet	55
12	supplemented with essential oil of Basil or Marjoram	58
13	Average body weight, milk yield and composition of	20
10	lactating Damascus goats fed a diet supplemented with	
	essential oil of Basil or Marjoram	65
	· · · · · · · · · · · · · · · · · · ·	

LIST OF FIGURE

Figure		Page
1.	Chemical composition of CFM, alfalfa hay and total	
	mixed ration (% DM basis).	24
2.	Chemical composition of CFM, berseem clover, rice	
	straw and basal diet (% DM basis)	27
3.	Identified active compounds of essential oil of Basil	
	extract by GC-MS analysis (%).	31
4.	Identified active compounds of essential oil of	
	Marjoram extract by GC-MS analysis (%).	32
5.	Effect of Marjoram on ruminal nutrients degradability	
	(%)	36
6.	Effect of Basil on ruminal nutrients degradability (%).	39
7.	Effect of Marjoram on some ruminal fermentation	
	parameters	42
8.	Effect of Basil on some ruminal fermentation	
	parameters	45
9.	Effect of Marjoram on ruminal gas production	48
10.	Effect of Basil on ruminal gas production	51
11.	Feed intake of lactating Damascus goats fed a diet	
	supplemented with essential oil of Basil or Marjoram	53
12.	Nutrients digestibility of lactating Damascus goats fed	
	a diet supplemented with essential oil of Basil or	
	Marjoram	54
13.	Rumen fermentation parameters of lactating	
	Damascus goats fed a diet supplemented with essential	
	oil of Basil or Marjoram	56
14.	Blood chemistry of lactating Damascus goats fed a	
	diet supplemented with essential oil of Basil or	
	Marjoram	59

15.	Average body weight of lactating Damascus goats fed	
	a diet supplemented with essential oil of Basil or	
	Marjoram	66
16.	Milk yield of lactating Damascus goats fed a diet	
	supplemented with essential oil of Basil or Marjoram	67
17.	Milk composition of lactating Damascus goats fed a	
	diet supplemented with essential oil of Basil or	
	Marjoram	70
18.	Milk efficiency of lactating Damascus goats fed a diet	
	supplemented with essential oil of Basil or Marjoram	71

LIST OF ABBREVIATION

ADF Acid-Detergent Fiber

ALT Alanin Amino Transferase (GPT)

(A/G ratio) Albumin / Globulin ratio

AST Aspartate Amino Transferase (GOT)

CFM Concentrated Feed Mixture

CP Crude Protein
DM Dry Matter

DMD Dry Matter Digestibility

DMI Dry Matter Intake

ECM Energy Corrected Milk

EO Essential Oil EE Ether Extract

FCM Fat Corrected Milk

HAP Hyper- Ammonia producing

MEO Mixture of essential oils

MUN Milk Urea Nitrogen

NDF Neutral-Detergent Fiber NFC Non Fiber Carbohydrate

OM Organic Matter

GOT Serum Glutamic-Oxaloacetate Transaminase

GPT Serum Glutamic-Pyruvate Transaminase

SCFA Short Chain Fatty Acid

SNF Solid Not Fat

TGP Total Gas Production
TMR Total Mixed Ration

TS Total Solid

VFA Volatile Fatty Acid