

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Effect of Adding Dexamethasone to Bupivacaine in Ultrasound Guided Adductor Canal Block For Post-operative Analgesia Following Knee Arthroscopy

Thesis

Submitted for Partial Fulfillment of Master Degree in Anesthesia, Intensive Care and Pain Management

By

Hassan Sayed Hassan Taha Kandil

M.B., B.CH Faculty of Medicine, Ain shams University

Under Supervision of

Prof. Dr. Bahaa Eldeen Ewais Hassan

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Prof. Dr. Sameh Salem Hefni Taha

Assistant Prof. of Anesthesia, Intensive Care and Pain Management Faculty of Medicine-Ain Shams University

Dr. Maha Sadek Hussein El Derh

Lecturer of Anaesthesia, Intensive Care and Pain Managment Faculty of Medicine-Ain Shams University

Faculty of Medicine - Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Bahaa Eldeen** Ewais Hassan, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine-Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Sameh Salem Hefni Taha, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine-Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Maha Sadek Hussein & Derh,** Lecturer of Anesthesia, Intensive
Care and Pain Management, Faculty of Medicine-Ain
Shams University, for her great help, active
participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Hassan Sayed Kandil

Tist of Contents

Title	Page No.
List of Tables	
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Pain	4
Adductor Canal Block	18
Pharmacology	25
Patients and Methods	48
Results	56
Discussion	
Conclusion	80
Recommendations	81
Summary	
References	
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Comparison between study gr group according to demograph	-
Table 2:	Comparison between study graph group according to postopera "beat/min".	ative heart rate
Table 3:	Comparison between study graph group according to postoperation pressure (mmHg)	ive systolic blood
Table 4:	Comparison between study graph group according to postope blood pressure (mmHg)	erative diastolic
Table 5:	Comparison between study graph group according to postoperation blood pressure (mmHg)	ve mean arterial
Table 6:	Comparison between study graph group according to postor analogue scale (VAS) at rest	perative visual
Table 7:	Comparison between study graph group according to postor analogue scale (VAS) at activity	perative visual
Table 8:	Comparison between study graph group according to analgesic of first call for analgesics) "min".	duration (time of
Table 9:	Comparison between study graph group according to cumul consumption "mg"	ative morphine
Table 10:	Comparison between study group according to side effect	-

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Pain pathway	9
Figure 2:	Numeric rating scale	14
Figure 3:	Visual Analog Scale	14
Figure 4:	Faces Pain Scale	15
Figure 5:	Anatomy of adductor canal	19
Figure 6:	Patient positioning	21
Figure 7:	Ultrasound view of the ACB	22
Figure 8:	Bupivacaine HCL structure	29
Figure 9:	The mechanism of local anesthetic	(LA) action30
Figure 10:	Mechanism of morphine action	46
Figure 11:	Comparison between study group group according to age "years"	
Figure 12:	Comparison between study group group according to sex	
Figure 13:	Comparison between study group group according to ASA	
Figure 14:	Comparison between study group group according to duration of surg	
Figure 15:	Comparison between study group group according to postoperative "beat/min".	e heart rate
Figure 16:	Comparison between study group group according to postoperative pressure (mmHg).	systolic blood
Figure 17:	Comparison between study group group according to postoperative d pressure (mmHg).	iastolic blood

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 18:	Comparison between study group group according to postoperative blood pressure (mmHg).	mean arterial
Figure 19:	Comparison between study group group according to postoper analogue scale (VAS) at rest	ative visual
Figure 20:	Comparison between study group group according to postoper analogue scale (VAS) at activity	ative visual
Figure 21:	Comparison between study group group according to analgesic dura first call for analgesics) "min"	ation (time of
Figure 22:	Comparison between study group group according to cumulative consumption "mg"	ve morphine
Figure 23:	Comparison between study group group according to side effect	

Tist of Abbreviations

Abb.	Full term
ACB	Adductor Canal Block
	American society of regional anesthesia
	Adenosine 5'-triphosphate
BMI	• •
Bp	
_	Central Nervous System
CPR	Cardiopulmonary Resuscitation
ECG	Electrocardiography
ERAS	Enhanced Recovery After Surgery
IV	Intravenous
IVC	Inferior Vena Cava
LA	Local Anesthetic
LAST	Local Anesthetic Systemic Toxicity
NRS	Numeric Rating Scale
NSAIDs	Nonsteroidal Anti-inflammatory Drug
PACU	Postanesthesia care unit
PCA	Patient-Controlled Analgesia
PONV	Postoperative Nausea and Vomiting
US	Ultrasound
VAS	Visual Analog Scale
WHO	World Health Organization

Introduction

rthroscopic knee surgery refers to a large variety of surgical interventions in the knee, and numerous analgesic regimens have been investigated in order to find the best combination of analgesics for these procedures. The post-operative pain response depends on the type and duration of surgical intervention, and it can be challenging to predict which analgesic regimen will be the most appropriate for each patient until after surgery (Espelund et al., 2014).

The post-operative pain of knee arthroscopy can affect early ambulation, range of motion and duration of stay in the hospital. Unrelieved post operative pain may result in clinical and psychological changes that affect quality of life (Carr and Goudas, 1999).

Adequate analgesia with motor preservation has become the goal after knee arthroscopies to enable shorter hospital stay, early physiotherapy, and faster recovery. So many options are available for the treatment of post-operative pain, including systemic (i.e., opioid and non opioid) analgesics and regional (i.e., neuraxial and peripheral) analgesic techniques, multimodal analgesia is achieved by combining different analgesics that act by different mechanisms and at different sites in the nervous system, resulting in synergistic analgesia with lowered adverse effects of administration of individual analgesics (Slover et al., *2014*).

Epidural analgesia can produce adverse effects such as urinary retention and motor block, delayed early mobilization (Fowler et al., 2008).

Femoral Nerve Block (FNB) is a well–established treatment for post-operative pain in knee arthroscopy but followed by reduced quadriceps muscle strength and associated with high risk of falling (Ilfeld et al., 2010 and Johnson et al., *2013*).

Adductor Canal Block (ACB) using Bupivacaine is a highly successful approach to the saphenous nerve, that was first described by Vander Wal (Vander-Wal et al., 1993).

Compared with FNB, ACB results in less reduction in the quadriceps muscle strength as only the motor nerve to the Vastus medialis of the quadriceps muscle traverses the adductor canal (*Grevstad et al.*, 2014).

AIM OF THE WORK

The aim of our study is to assess the effect of adding dexamethasone perineurally to bupivacaine in adductor canal block for post operative analgesia following knee arthroscopy under spinal anaesthesia regarding duration of postoperative analgesia as a **primary** objective and one-day postoperative analgesic and opioid consumption as a **secondary** objective.

PAIN

Definition of pain has been updated as: an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage and is expanded upon by the addition of six key Notes and the etymology of the word pain for further valuable context.

- Pain is always a personal experience that is influenced to varying degrees by biological, psychological, and social factors.
- Pain and nociception are different phenomena. Pain cannot be inferred solely from activity in sensory neurons.
- Through their life experiences, individuals learn the concept of pain.
- A person's report of an experience as pain should be respected.
- Although pain usually serves an adaptive role, it may have adverse effects on function and social and psychological wellbeing.
- Verbal description is only one of several behaviors to express pain; inability to communicate does not negate the possibility that a human or a nonhuman animal experiences pain (*Raja et al.*, 2020).

Review of Literature -

Nociception is the neural process involving the transduction and transmission of a noxious stimulus to the brain via a pain pathway. Pain is the result of a complex interplay between signaling systems, modulation from higher centers and the unique perception of the individual (*Pasero and McCaffrey*, 2005).

Classification of Pain

Classifying pain is helpful to guide assessment and treatment. There are many ways to classify pain and classifications may overlap.

 Nociceptive: It represents the normal response to noxious insult or injury of tissues such as skin, muscles, visceral organs, joints, tendons, or bones.

It is classified into two forms:

- Somatic: Musculoskeletal (joint pain, myofascial pain), cutaneous; often well localized.
- Visceral: Hollow organs and smooth muscle; usually referred.
- Neuropathic: Pain initiated or caused by a primary lesion or disease in the somatosensory nervous system. Sensory abnormalities range from deficits perceived as numbness to hypersensitivity (hyperalgesia or allodynia) and paresthesia such as tingling. Examples include, but are not limited to, diabetic neuropathy, postherpetic neuralgia, spinal cord injury