

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

PRODUTION OF BIO PLASTIC FROM AGRICULTURAL WASTES

By

AYA MOHAMED MAHMOUD ALI KOBASH

B.Sc. (Agricultural Engineering), Fac. of Agric., Ain Shams Univ., 2013

Thesis Submitted in Partial Fulfillment Of The Requirements of the Degree of

MASTER OF SIENCE in AGRICLTURAL SIENCES (Agricultural Mechanization)

Department of Agricultural Engineering Faculty of Agriculture Ain Shams University

Approval Sheet

PRODUTION OF BIO PLASTIC FROM AGRICULTURAL WASTES

By

AYA MOHAMED MAHMOUD ALI KOBASH

B.Sc. (Agricultural Engineering), Fac. of Agric., Ain Shams Univ., 2013

This thesis for M.Sc. degree has been approved by:

Dr. Elam	in Mohamed	Arif		•••••	•••••
	Research, ultural Resear	Agricultural ch Centre.	Engineering	Research	Institute
Prof.		Mohamed Abural Engineer		of Agricult	ture, Ain
Prof.	arak Moham Emeritus of hams Univers	Agricultural E	ngineering, Fa	culty of Ag	griculture,

Date of Examination: $2 \setminus 2 \setminus 2022$

PRODUTION OF BIO PLASTIC FROM AGRICULTURAL WASTES

By

AYA MOHAMED MAHMOUD ALI KOBASH

B.Sc. (Agricultural Engineering), Fac. of Agric., Ain Shams Univ., 2013

Under the supervision of:

Dr. Mobarak Mohamed Mostafa

Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Fathi Abdel Haleem Abdel Hadi Hassan

Senior Researcher of Agricultural Engineering, Agricultural Engineering of Research Institute.

Dr. Ashraf Abdel - Galil Anwer

Associate prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Aya Mohamed Mahmoud Ali Kobash: Production of Bio Plastic From Agricultural Wastes. Unpublished M.Sc. thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2022.

This study was conducted to reduce the accumulation of wastes by using Agricultural wastes "unmarketable potato tubers and banana peel" for producing biodegradable plastic films to be substitute of oil based plastics "OBP" which is often not biodegradable. Starch extracted from unmarketable potato tuber used to produce starch based plastic samples "SBP" with different of glycerol concentrations (5, 10, 15, 20, 25, 30, 99.5% v/v) as a plasticizer, by casting after gelatinization. Banana peel bio plastic "BBP" produced using glycerol 20 % only. The physical properties of SBP films samples including thickness; density, water absorption capacity, rate of weight loss, "biodegradability" were studied, as well as mechanical properties at (25 °C and RH 48 %) including tensile strength, modulus of elasticity, elongation %, firm force, and required energy for firm were also investigated compared with OBP samples. Based on the tests results, It was found that, the maximum value of extracted starch from unmarketable potato tuber was 13.5% obtained by blending potato tubers. As far physical properties, SBP films with elevated glycerol concentration increased the sample thickness but decreased its density. Glycerol 20% gave the best flexible compact structure SBP films. Average thickness and density of SBP film (20% glycerol) were 0.25 mm and 80.11 Kg/m³ respectively. Meanwhile, the average thickness and density for BBP films were 0.345 mm and 58.22 Kg/m³. On the other hand the corresponding values for OBP were 0.41 mm and 24.39 Kg/m³ respectively. The water absorption capacity for SBP and BBP films with 20 % glycerol were 83.33 and 55.5 % after 24 hour and the corresponding value for OBP was 35.11 %. The rate of weight loss of SBP and BBP films with 20% glycerol concentration was 72% and 82.3 % after 96 days and nearly to be 90 % after 103 day with BBP samples, while the rate of mass loss for OBP films with 15% HDPE not exceed 1.8 % and can be neglected. As far the mechanical properties of SBP; BBP 20% glycerol and OBP 15% HDPE films, the maximum values of tensile strength were (13.23, 1.73 and 1.12 MPa) respectively, modulus of elasticity were (1556.73, 96.36 and 44.97MPa), firm force were (0.916, 0.82 and 1.08 N), mean consumed energy for firm were (44.05, 54.45 and 31.06 N.mm), the optimum elongation were (100.77, 133.33 and 107.26 %) respectively. Although the high water absorption capacity of bio-plastic samples produced from potato starch or banana peels makes them unsuitable for using in the food service industry, they can be used with same additives in (one time use) packaging materials. Since it is biodegrade very fast, therefore, producing starch based biodegradable plastic from un-marketable potato tuber and banana peel can be used instead of the traditional oil based plastic.

Keywords: Municipal Solid Waste "MSW", Agro waste, Starch based plastic "SBP", Oil based plastic "OBP", Unmarketable potato tubers, Banana peel and Biodegradability.

ACKNOWLEDGEMENT

I would like to express my deep gratitude to my supervisor, **Prof. Dr. Mobarak Mohamed Mostafa**, Professor Emeritus of Agricultural engineering, Dep. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for valuable discussions.

Private thanks to **Dr. Fathi Abdel Haleem**. Senior Researcher, Agricultural Engineering, Research Institute of Agricultural Engineering. For his suggestion the theme of study and helping me always during period of study.

I would like to express all thanks and appreciation for **Dr. Mohamed Mayhoub**, Associate professor, Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for helping me in making mechanical tests of bio plastic samples.

Finally, I would like express my thanks for my friends and my brother **Abd-Elrahman** and my sisters **Naglaa**, **Samera** and private my sister **Samia** for helping and support and stimulation me during period the study.

CONTENTS

	Title	Page
1	INTRODUCTION	1
2	REVIEW OF LITRITURE	5
2.1	Municipal Solid Waste "MSW" Global status	5
2.2	MSW Current and Emerging Approaches	5
2.3	Sustainable Methodology for MSW Management	7
2.4	Agricultural waste (AW)	8
2.5	Egyptian MSW overview	11
2.6	Polymers and Plastics	13
2.6.1	Plastic history	14
2.6.2	Plastics current status globally	16
2.6.3	Plastics Structure, classification and their Uses	17
2.6.4	Types of plastic	19
2.6.5	Plastics Codes	21
2.6.6	Conventional plastic problems	22
2.7	Bio plastic	24
2.7.1	Bio-plastics definition	24
2.7.2	Bio plastics global capacity	26
2.7.3	Bio-plastics classification	27
2.7.4	Starch Plastic Technology	29
2.8	Starch based bioplastic applications	31
2.9	Bio plastic labeling	33
2.10	Bio plastic advantages	34
2.11	Bio-plastics' Main Challenges	34
2.12	Egypt Bio plastics an imperative and a promising	
	industry	36
2.13	Egyptian Agricultural wastes for producing bio	26
0 10 1	plastics	36
2.13.1	Potato waste	36
2.13.2	Banana waste	37

3	MATERIALS AND METHODS	40
3.1	Potato tuber and Banana peel	40
3.2	Chemicals	40
3.3	Synthetic oil based plastic	40
3.4	Starch extraction	41
3.5	Bio plastic production steps from unmarketable	
	potato tubers	43
3.6	Production of banana peel based plastic (BBP)	44
3.7	Test Variables	45
3.8	Test samples preparation	45
3.9	Measurements	46
3.9.1	Physical properties	46
3.9.2	Mechanical properties	48
3.10	Statistical Analysis	49
3.10.1	Equipment and Instrumentation	49
4	RESULTS AND DISCUSSION	53
4.1	Bio plastic from unmarketable potato	53
4.1.1	Starch extraction	53
4.1.2	Physical properties of starch based plastic "SBP"	
	films	53
4.1.3	Mechanical properties	57
4.2	Bio plastic from Banana peel	63
4.2.1	Physical properties of banana peel bio plastic "BBP"	
	films	63
4.2.2	Mechanical properties	66
5	SUMMARY & CONCLUSIONS	71
6	REFERENCES	73

LIST OF TABLES

Table		Page
No.		No.
2-1	Distribution of global plastics production in (2019)	16
2-2	Main types of polymers	21
2-3	Approximate amylopectin and amylose composition of	
	various types of starch.	29
2-4	Agricultural statistics for potato and banana in Egypt.	39
2-5	Chemical composition and total solids content of potato	
	cultivars Spunta (dry weight basis).	39
2-6	Chemical composition of banana peels cv. Maghrabi (dry	
	weight basis).	39
3-1	Magnetic stirrer specifications.	50
3-2	Digital dial plywood board veneer Specification.	51
4-1	The statistical values (Maximum; Minimum; Average;	
	standard deviation "SD" and coefficient of variation) of	
	SBP and OBP samples thickness.	55
4-2	The statistical values (Maximum; Minimum; Average;	
	standard deviation "SD" and coefficient of variation) of	
	SBP and OBP samples Density.	55
4-3	The Statistical values (Max, Min, Average, SD and	
	coefficient of variation) of BBP samples thickness with	
	20 % glycerol concentration	64
4-4	The statistical values (Max, Min, Average, SD and	
	coefficient of variation) of BBP samples density with 20	
	% glycerol concentration.	64

LIST OF FIGURES

Fig. No.		Page No.
2-1a	Waste management hierarchy.	6
2-1b	Solid waste management: the Circular Economy	6
2-2	Global plastics waste generation, 1950 – 2015.	17
2-3	Areas of utilization for various plastics.	19
2-4	Plastic Identification Code.	22
2-5	Bio-plastics comprised of biodegradable plastics and	
	bio-based plastics.	24
2-6	Three fundamental steps involved in polymer	
	biodegradation in soils.	25
2-7	Global Production Capacities of Bio-Plastics in 2020	
	and expected till 2025.	26
2-8	Land use estimation for Bio-Plastics 2020 and	
	expected till 2025.	26
2-9	Global production capacities of bio plastics in 2020 by	
	market segment	31
2-10	Bio plastic labels currently in use.	34
3-1	Stages of Starch extraction process from unmarketable	
	potato tubers.	41
3-2	Preparation steps of starch based plastic film samples	
	from potato tuber.	43
3-3	Steps of production of bio plastic from banana peels	44
3-4	Magnetic stirrer Main parts.	50
3-5	Digital micrometer for plastic thickness.	51
3-6	Bench top materials testing machine.	52
4-1	The effect of potato slices thickness on the percentage	
	of extracted starch.	53
4-2	Water absorption capacity % of starch based plastic	
	films "SBP 20 % glycerol conc." compared with oil	
	based plastic "OBP 15 HDPE".	56

4-3	Weight loss % "Biodegradability" of starch based	
	plastic "SBP 20 % glycerol concentration" compared	
	with oil based plastic "OBP 15 HDPE".	57
4-4	Effect of glycerol concentration on tensile strength of	
	starch based plastic "SBP" compared with oil based	
	plastic "OBP" films "15 % HDPE".	58
4-5	The effect of glycerol concentration on modulus of	
	elasticity of starch based plastic "SBP" compared with	
	oil based plastic "OBP" films.	59
4-6	Effect of glycerol concentration on elongation % of	
	starch based plastic "SBP" compared with oil based	
	plastic "OBP" films.	60
4-7	Effect of glycerol concentration on firm strength of	
	starch based plastic "SBP" compared with oil based	
	plastic "OBP" films.	61
4-8	The consumed firm energy of starch based plastic	
	"SBP" samples 20 % glycerol conc	62
4-9	The consumed firm energy of oil based plastic "OBP"	
	samples	62
4-10	Water absorption capacity % of Banana peels based	
	bio plastic 20 % glycerol, compared with oil based	
	plastic "OBP" 15% LDPE.	65
4-11	Weight loss % "Biodegradability" of banana peels	
	based plastic 20 % glycerol, compared with oil based	
	plastic "OBP" 15% HDPE.	66
4-12	The recorded value for tensile strength with banana	
	peel based plastic "BBP" 20 % glycerol and oil based	
	plastic "OBP "15 % HDPE.	67
4-13	The recorded value for modulus of elasticity with	
	banana peel based plastic "BBP" 20 % glycerol and oil	
	based plastic "OBP "15 % HDPE.	68

4-14	The recorded value for elongation % with banana peel	
	based plastic "BBP" 20 % glycerol and oil based	
	plastic "OBP "15 % HDPE.	69
4-15	The recorded value for firm force with banana peel	
	based plastic "BBP" 20 % glycerol and oil based	
	plastic "OBP "15 % HDPE.	69
4-16	The consumed firm energy of banana peel based	
	plastic "BBP" 20 % glycerol	70

LIST OF ABBREVIATIONS

OBP Oil Based Plastics
SBP Starch Based Plastic
BBP Banana Based Plastic

HDPE High Density Poly Ethylene

MSW Municipal Solid Waste
GHG Global Greenhouse Gas

FW Food Waste

AW Agricultural WasteMt Million Metric Tons

SWM Solid Waste Management

MSWM Municipal Solid Waste management

MSWMS Municipal Solid Waste Management System

PW Plastic Waste

USD United State of Dollar

EGP Egypt

FLW Food Loss and Waste

NENA Near East and North Africa

IUPAC International Union of Pure and Applied Chemistry

EPI Environmental Product Incorporation

SPI Society of the Plastics Industry
BSI British Standards Institution

ISO International Standards Organization

PCL Poly Capro Lactone

PBS Poly Butylene Succinate

PE PolyEthylene

NY11 Nylon 11

AcC Acetyl Cellulose
PLA Poly Lactide Acid

PHB Poly Hydroxy Butyrate
HMF Hydroxy Methyl Furfural