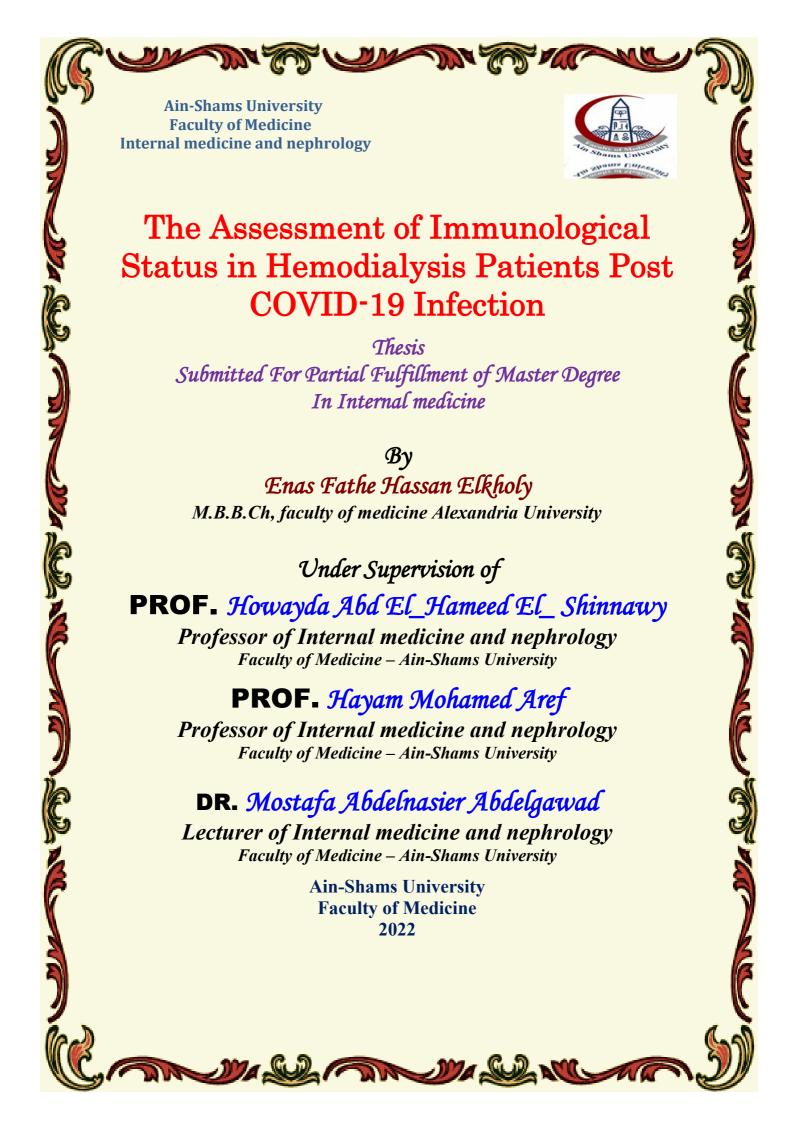


Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud


جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Acknowledgements

Praise to "Allah", the Most Gracious and the Most Merciful Who Guides Us to the Right Way.

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Howayda Abd El_Hameed El_Shinnawy**, Professor of Internal medicine and nephrology, Faculty of Medicine, *Ain-Shams* University for her valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts she devoted in the supervision of this study.

I'll never forget, how co-operative was **Prof. Dr. Hayam Mohamed Aref**, Professor of Internal medicine and nephrology, Faculty of Medicine, *Ain-Shams* University, also she was encouraging all the time. It is honorable to be supervised by her.

I would like also, to express my great thanks to **Dr. Mostafa Abdelnosier Abdelgawad**, Lecturer of Internal medicine and nephrology, and Faculty of Medicine – *Ain-Shams* University. His valuable advises and continuous support facilitated completing this work.

I would like to thank all the staff members of the Internal medicine and nephrology department.

Finally, I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life.

Enas Fathe Hassan Elkholy 2022

List of Contents

Subjects	Page
List of Abbreviations	
List of Tables	
List of Figures	IV
Introduction	1
Aim of the study	3
Review of Literature:	
♣ Chapter (1): COVID-19	
♣ Chapter (2): Hemodialysis Patients Post COVID-19 Infection	41
 ♣ Chapter (3): Diagnosis and laboratory findings ♣ in covid -19 infection 	
♣ Chapter (4) Covid-19 pandemic origin ,is is abioweapon?	66
Patients and Methods	
Results	
Discussion	95
Summary	106
Conclusion	
Recommendation	
References	
Arabic Summary	

List of abbreviations

ACE-2	angiotongin converting anguma?
ADCC	angiotensin converting enzyme 2 antibody-dependent cellular cytotoxicity
ADE	
	antibody-dependent enhancement
ALI	acute lung injury
ARBs	angiotensin receptor blockers
ARDS	acute respiratory distress syndrome
CDC	Centers of disease control
CKD	chronic kidney disease
CLpro	chymotrypsin-like protease
COPD	chronic obstructive pulmonary disease
COVID-19	Coronavirus disease 2019
CRP	C-reactive protein
CRS	cytokine release syndrome
CVD	cardiovascular disease
ELISA	enzyme linked immunosorbent assays
FcγRIIIa	Fc-receptor
HD	hemodialysis
ICTV	International Committee on Taxonomy of Viruses
ICUs	intensive care units
IFA	immunofluorescence assays
IgG	immunoglobulin G
IL	Interleukin
LAG-3	lymphocyte-activation gene-3
MASP-2	mannan-binding lectin-associated serine protease 2
MDs	Metabolic disorders
MERS-CoV	Middle East respiratory syndrome coronavirus
MHC-I	major histocompatibility complex class I
Mpro	main protease
NAT	nucleic acid tests
NK	natural killer
NKG2A	NK group 2 member A
NLRP3	nucleotide-binding domain and leucinerich repeat pyrin
	domain 3
nsps	non-structural proteins
ORF8	open reading frame 8
ORFs	open reading frames
PAMPs	pathogen-associated molecular patterns
PD-1	death protein 1

PPE	personal protective equipment
RAS	renin–angiotensin system
RBD	receptor binding domain
RCT	replication-transcription complex
RT-PCR	Reverse transcription polymerase chain reaction
SARS	severe acute respiratory syndrome
SARS-CoV	severe acute respiratory syndrome coronavirus
sgRNAs	subgenomic RNAs
TH1	T helper 1
TIM-3	T-cell immunoglobulin
TLRs	toll-like receptors
WHO	World health organization

∠ist of tables

List	Review	Page
Table (I)	Summary of antibody responses in COVID-19 patients ^{a)}	29
List	Results	Page
Table (1):	Demographic characteristics of the studied patients in different groups	75
Table (2):	Distribution of ERSD causes and duration of analysis in different groups	76
Table (3):	Distribution of Comorbidities of the studied patients in different groups	78
Table (4):	Distribution of type of isolation of the studied patients in different groups	79
Table (5):	Distribution of IgG in the studied patients in different groups	80
Table (6):	Comparison between different groups in labs findings	78
Table (7):	Distribution of duration of hospital admission and from infection in different groups	79
Table (8):	Correlation of IgG Titer, hospital admission duration with different factors in the confirmed cases group and suspected cases group	80
Table (9):	Correlation of IgG Titer, hospital admission duration with different factors in COVID confirmed by PCR	82
Table (10):	Correlation of IgG Titer, hospital admission duration with different factors in COVID suspected by CT	83
Table (11)	Relation between duration from infection and IgG and Labs findings	84

List of figures

List	Review	Page
Figure (1)	Structure of respiratory syndrome causing human coronavirus	5
Figure (2)	Mechanisms in adverse and protective immune response for SARS-CoV-2. Upper panel (red)	22
Figure (3)	Antibody response and function in COVID-19 immunity and pathogenesis	32
Figure (4)	Ct of patients with COVID-19 have pulmonary nodules that increase in size and number in follow-up CT	57
Figure(5)	Chest computed tomography findings in patients with coronavirus disease	61
Figure(6)	In COVID-19 patients, pleural effusions, lung cavitation, and pneumothorax were reported as rare finding	62
Figure(7)	Chest x-ray findings in a patient with coronavirus disease.	64
List	Results	Page
Figure (1)	Scatter plot representing correlation between IgG titre and duration of infection	85
Figure (2)	Scatter plot representing correlation between IgG Titer and lymphocytes in confirmed and suspected cases	89

Introduction

Coronavirus disease 2019 (COVID-19) is an outbreak due to SARS-CoV-2, a new virus of Coronaviridae family, emerged in China in December 2019 and declared by the World Health Organization a global pandemic on March 2020.

Hemodialysis patients have impaired immune function, so they constitute a group at risk of suffering covid-19 infection and possibly with a high incidence of complications. Furthermore, they visit a medical center regularly (3 times per week), with more than 4 hours per day, they are at high risk more than general population(**G. Grasselli**, et al. 2020)

Thus, it can be stated that a Dialysis unit is a place that deserve special consideration in relation with the epidemiology of Covid -19. Several diagnostic strategies are available to identify current infection, rule out infection and test for past infection and immune response.

The immune system produces proteins called antibodies in response to SARS-CoV-2, the virus that causes COVID-19. The researchers found that levels of an antibody called immunoglobulin G (IgG) remained elevated in infected patients However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection.

Antibody testing to covid_19 by Enzyme-Linked Immuno-Sorbent Assay (ELISA) is highly sensitive and specific and may indicate prior infection. Antibody responses to SARSCoV-2 can be detected in most infected individuals 10–14 d after the onset of COVID-19

symptoms. Serological tests detect antibodies against spike protein (S) and/or nucleoprotein (N) since these are the most immunogenic proteins of SARS-CoV-2 (Morawska L,et al. 2020).

The S protein, consisting of a S2 and a S1 subunit with a receptor binding domain (RBD), is present on the envelope and is used by the virus to connect to the human cells using the ACE-2 receptor. Since antispike protein antibodies have been shown to possess neutralizing effects in vitro, it has been suggested that detection of antibodies against spike protein could provide a better indication of an effective immune response(Korber B, et al.2020.)

It was important to figure these changes out in this study and to investigate the difference of immune responses

Aim of The Work

Detection of the level of immunoglobulin (IgG) antibodies against covid _19 virus to assess the immunological status of the patients post covid_19 infection and the risk of reinfection with covid _19.

Chapter (1)

COVID-19

Coronaviruses belong to the Coronaviridae family in the Nidovirales order. Corona represents crown-like spikes on the outer surface of the virus; thus, it was named as a coronavirus. Coronaviruses are minute in size (65–125 nm in diameter) and contain a single-stranded RNA as a nucleic material, size ranging from 26 to 32kbs in length (Fig. 1). The subgroups of coronaviruses family are alpha (a), beta (b), gamma (c) and delta (d) coronavirus. (Di Gennaro et al., 2020).

The severe acute respiratory syndrome coronavirus (SARS-CoV), H5N1 influenza A, H1N1 2009 and Middle East respiratory syndrome coronavirus (MERS-CoV) cause acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) which leads to pulmonary failure and result in fatality. These viruses were thought to infect only animals until the world witnessed a severe acute respiratory syndrome (SARS) outbreak caused by SARS-CoV, 2002 in Guangdong, China (Khatib et al., 2020). Only a decade later, another pathogenic coronavirus, known as Middle East respiratory syndrome coronavirus (MERS-CoV) caused an endemic in Middle Eastern countries (N. Wang et al., 2013).

At the end of 2019, Wuhan an emerging business hub of China experienced an outbreak of a novel coronavirus that killed more than eighteen hundred and infected over seventy thousand individuals within the first fifty days of the epidemic. This virus was reported to be a member of the b group of coronaviruses. The novel virus was named as Wuhan coronavirus or 2019 novel coronavirus (2019-nCov) by the Chinese researchers.

The International Committee on Taxonomy of Viruses (ICTV) named the virus as SARS-CoV-2 and the disease as COVID-19 (Cui et al., 2019),(Organization, 2020a). In the history, SRAS-CoV (2003) infected 8098 individuals with mortality rate of 9%, across 26 countries in the world, on the other hand, novel corona virus (2019) infected 120,000 individuals with mortality rate of 2.9%, across 109 countries, till date of this writing. It shows that the transmission rate of SARS-CoV-2 is higher than SRAS-CoV and the reason could be genetic recombination event at S protein in the RBD region of SARS-CoV-2 may have enhanced its transmission ability.

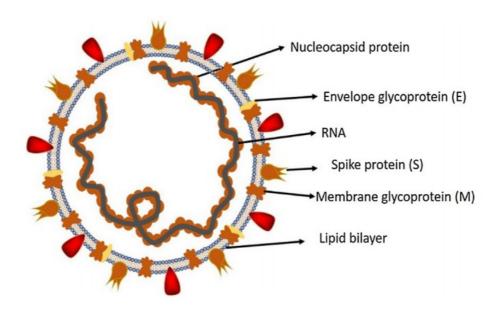


Fig. 1: Structure of respiratory syndrome causing human coronavirus (John et al., 2015)

Epidemiology

The COVID-19 epidemic expanded in early December from Wuhan, China's 7th most populous city, throughout China and was then exported to a growing number of countries. The first confirmed case of