

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

FACULTY OF ENGINEERING

Electrical Power and Machines Engineering

Mechanisms and Auto-classification of Partial Discharges and Associated Faults in Oil Immersed Transformers.

A Thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Electrical Engineering Department

(Electrical Power and Machines Engineering Department)

Submitted by:

Eng. Walid Sameh Salah El-Din

Supervised by:

Prof. Dr. Soliman M. Eldebeiky
Associate Prof. Dr. Abdelhady R. Salama
Associate Prof. Dr. Mahmoud A. Attia

Cairo 2022

FACULTY OF ENGINEERING

Electrical Power and Machines

Mechanisms and Auto-classification of Partial Discharges and Associated Faults in Oil Immersed Transformers.

Submitted by:

Eng. Walid Sameh Salah El-Din

Master of Science in Electrical Engineering

(Electrical Power and Machines Engineering)

Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Abdelsalam Hafez Abdelsalam Hamza	
Electrical Power and Machines Department	
Faculty of engineering at Shoubra	
Banha University	
Prof. Dr. Hanafy M. Ismail	
Electrical Power and Machines Department	
Faculty of Engineering	
Ain Shams University	
Prof. Dr. Soliman M. Eldebeiky	
Electrical Power and Machines Department	
Faculty of Engineering	
Ain Shams University	
Associate Prof. Dr. Mahmoud A. Attia	
Electrical Power and Machines Department	
Faculty of Engineering,	
Ain Shams University	

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Walid Sameh Salah Eldin
Signature:
Date:

Researcher Data

Name : Walid Sameh Salah Eldin

Date of birth : 25 - 12 - 1988

Place of birth : Cairo, Egypt

Last academic degree : Master of Science

Field of specialization : Electrical Engineering

University issued the degree : Ain Shams University

Date of issued degree : 2016

Current job : Production Manager.

ACKNOWLEDGEMENTS

First and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

I would like to express my deep gratitude and appreciation to my supervisors Prof. Dr. / Soliman M. Eldebiky and Dr. / Abdelhady R. Salama and Dr. / Mahmoud A. Attia for their encouragement, suggestions, and patience during the period of this work.

I want to thank my lovely family for their support, love, and their precious advice through my life.

Table Of Contents

Table Of Contents	li
List Of Figures	Vi
List Of Tables	Xi
List Of Abbreviations	Xii
Abstract	XIV
Chapter (1): Introduction	
1.1 Overview	1
1.2 Research Objectives	3
1.3 Contributions To The Field	3
1.4 Thesis Outlines	4
Chapter (2): Literature Review And Previous Work Done By Others	
2.1 General	6
2.2 Partial Discharge	6
2.3 Effect Of Pd In Insulation System	9
2.4 Partial Discharge Classification	10
2.4.1 External Discharge	10
2.4.2 Internal Discharge	10
2.5 Partial Discharge Detection Techniques	17
2.5.1 Conventional Techniques	18
2.5.2 Non-Conventional Techniques	19

2.6 Conclusion	38
Chapter (3): Ultra-High Frequency Antenna Design And Validation	
3.1 General	39
3.2 Introduction To Hilbert Fractal Curves Antenna	40
3.3 Hilbert Fractal Antenna Design Parameters	41
3.3.1 Antenna Side Length (l).	41
3.3.2 Antenna Order (n).	42
3.3.3 The Length Of Line Segment (d).	43
3.4 HFSS Simulation Model	45
3.5 Validation Of The Designed Hilbert Fractal Antenna	48
3.6 Summery And Conclusion	50
Chapter (4): PD Source Detection And Classification Using Proposed UHF Antenna	
4.1 General	51
4.2 Experimental Setup	52
4.3 PD Artificial Test Specimen	53
4.4 Data Accusation And Signal Processing Techniques	54
4.4.1 Discrete Fourier Transform	55
4.4.2 Discrete Wavelet Transform	55
4.5 Feature Extraction And Intelligent Classifier	56
4.6 Results And Discussion	58
4.6.1 PD Source Activity Type Classification	58
4.6.2 PD Activity Medium Classification	63

4.6.3 UHF Signal Processing In Time Domain	67
4.7 Summary AND CONCLUSIONS	67
Chapter (5): Numerical Modelling Of PD Current Pulses Formation In A Needle To Plane Geometry	
5.1 General	69
5.2 Model Description	70
5.2.1 Simulation Model Geometry	70
5.2.2 Governing Equations And Boundary Conditions	72
5.2.3 Domain Meshing And Simulation Solver Parameters	79
5.2.4 Discharge Current Calculation Method	81
5.3 Simulation Results	81
5.4 Model Validation	89
5.4.1 Experimental Results Comparison Validation	89
5.4.2 Numerical Results Comparison Validation	92
5.5 Numerical Model Remarks	96
5.6 Conclusion	96
Chapter (6): Experimental Studies Of Negative Corona Current Pulses Characteristics	
6.1 General	99
6.2 Experimental Setup	100
6.3 Experimental Procedure	101
6.4 Results And Discussion	102
6.5 Comparison Between Experimental Result And Numerical Results.	107

Table of Contents

6.6 Conclusions.	110
Chapter (7): Comparison Of Trichel Pulses Characteristics Obtained By Various Approaches	114
7.1 Average DC Current	114
7.2 Pulse Repetition Frequency	115
7.3 Conclusions	119
Chapter (8): Conclusions And Future Studies Recommendation	120
8.1 Thesis Conclusions	120
8.2 Future Research Recommendations	123
References	124

List of Figures

Fig. (2.1) PD equivalent circuit with applied voltage $V(t)$; C_1 is PD source with discharge Sphere Gap (SG), C_2 , C_3 are health insulation.	7
Fig. (2.2): Electric field distribution around sharp edge with applied voltage -6.5 kV	11
Fig. (2.3): Surface Discharge model	14
Fig. (2.4): Voids inside insulation material	16
Fig. (2.5): PD detection techniques	17
Fig. (2.6): IEC 60270 Test circuit diagram for PD measurement at transformer taping of HV bushing	20
Fig. (2.7): Common Transformers Drain valves; (a) Gate Valve, (b) Globe Valve	33
Fig. (2.8): UHF valve sensor insertion depth different positions	34
Fig. (3.1): Hilbert Fractal curve design Parameters.	41
Fig. (3.2): Hilbert Fractal curve different orders arrangements.	42
Fig. (3.3): Hilbert Fractal curve Compositions.	43
Fig. (3.4): HFSS proposed antenna model.	45
Fig. (3.5): Proposed Antenna performance parameters l=80mm, b=1.6mm (a) S11 parameter, and (b) VSWR parameter.	47
Fig. (3.6): Antenna performance parameters l=80mm, b=2mm (a) S11 parameter, and (b) VSWR parameter.	47
Fig. (3.7): Antenna performance parameters l=90mm, b=1.6mm (a) S11 parameter, and (b) VSWR parameter.	47
Fig. (3.8): Antenna performance parameters l=90mm, b=2mm (a) S11 parameter, and (b) VSWR parameter.	48

Fig. (3.9): Proposed manufactured antenna (a) antenna front, (b) antenna back with the connection point.	49
Fig. (3.10): Measured return loss (S11) curve of the antenna.	49
Fig. (4.1): Laboratory Experimental setup for PD detection.	52
Fig. (4.2): Laboratory Experimental Real setup for PD detection.	5 3
Fig. (4.3): Artificial PD sources; (a) Corona discharge in Air model, (b) Corona discharge in oil model (c) Surface discharge model, (d) Void discharge model.	54
Fig. (4.4): Two-level DWT.	56
Fig. (4.5): Basic architecture of the ANN.	58
Fig. (4.6): Sample of captured UHF pulses for the four studied cases; (a) Corona discharge (Air), (b) Corona in oil Discharge, (c) Surface Discharge, and (d) Internal void discharge.	60
Fig. (4.7): DWT Tree mode for random sampled signal from Case (d): internal void discharge.	61
Fig. (4.8): Normalized power frequency spectra for the Sample of captured UHF pulses the four studied cases	62
Fig. (4.9): Different medium PD source activity model	64
Fig. (4.10): Sample of captured UHF pulses for the four studied cases; 1, 2, 3, 4	65
Fig. (4.11): Normalized power frequency spectra for the Sample of captured UHF pulses the four studied cases; 1,2,3,4	66
Fig. (5.1): needle to plane geometry computational domain (a) whole domain overview, (b) needle tip zoomed view.	71
Fig. (5.2): Simulation Domain boundary identification.	77
Fig. (5.3): Full Simulation domain fine mesh created.	80
Fig. (5.4): Mesh Gradient from needle tip to outer boundaries.	80

Fig. (5.5): Calculated current pulses for simulation model (r=35um, h=6mm) with -5.5 kV DC applied voltage.	83
Fig. (5.6): Magnified view for one pulse at applied voltage -5.5 kV for simulation domain (r=35um, h=6mm).	83
Fig. (5.7): Species distribution at $t=6.152\mu s$ (pulse initiation) (a) electron density distribution N_e [1/m3], (b) Positive ions density distribution N_p [1/m3], (c) negative ions density distribution N_n [1/m3], and (d) Electric Field (E) distribution [V/m]	84
Fig. (5.8): Species distribution at $t=6.19\mu s$ (pulse initiation) (a) electron density distribution N_e [1/m3], (b) Positive ions density distribution N_p [1/m3], (c) negative ions density distribution N_n [1/m3], and (d) Electric Field (E) distribution [V/m]	85
Fig. (5.9): Species distribution at $t=6.213\mu s$ (pulse peak) (a) electron density distribution N_e [1/m3], (b) Positive ions density distribution N_p [1/m3], (c) negative ions density distribution N_n [1/m3], and (d) Electric Field (E) distribution [V/m]	86
Fig. (5.10): Normalized peak values of studied parameters i.e., three species concentrations Ne, Np, Nn, calculated current I, and electric field E, during the pulse obtained in Fig. (5.6).	86
Fig. (5.11): Species distribution at $t=6.237\mu s$ (pulse peak) (a) electron density distribution N_e [1/m3], (b) Positive ions density distribution N_p [1/m3], (c) negative ions density distribution N_n [1/m3], and (d) Electric Field (E) distribution [V/m]	87
Fig. (5.12): Electric field distribution along z axis between needle tip $(0*10-3)$ to ground plan $(6*10-3)$ m.	88
Fig. (5.13): Negative ions concentration at $t = 6.523 \mu s$.	89
Fig. (5.14): Comparison between Simulated and Experimental [109] average DC current for needle to plane geometry (R=35 μ m, h=6mm).	91
Fig. (5.15): Comparison between Simulated and Experimental [109] pulse repetition frequency for needle to plane geometry (R=35 μ m, h=6mm).	91

Fig. (5.16): Full Simulation domain (2nd) fine mesh created	92
Fig. (5.17): Calculated current pulses for simulation model (r=250 μ m, h=3.3mm) with -5.5 kV DC applied voltage.	93
Fig. (5.18): Magnified view for one pulse at applied voltage -5.5 kV for simulation domain (r=250 μ m, h=3.3mm).	93
Fig. (5.19): Species distribution at $t=1.36\mu s$ (pulse initiation) (a) electron density distribution N_e [1/m3], (b) Positive ions density distribution N_p [1/m3], and (c) negative ions density distribution N_n [1/m3] (r=250 μm , h=3.3mm).	94
Fig. (5.20): Species distribution at $t=3.37\mu s$ (pulse peak) (a) electron density distribution N_e [1/m3], (b) Positive ions density distribution N_p [1/m3], and (c) negative ions density distribution N_n [1/m3] (r=250 μm , h=3.3mm).	95
Fig. (5.21): Negative ions concentration at $t=1.55\mu s$	95
Fig. (5.22): Different obtained Current pulses waveform with different applied voltages; (a)Uapp= -4kV, (b)Uapp= -4.5kV, (c)Uapp= -5kV, (d)Uapp= -5.5kV, (e)Uapp= -6.0kV, (f)Uapp= -6.5kV	97
Fig. (6.1): Corona discharge test set up Schematic.	100
Fig. (6.2): Overview for negative Corona discharge generating and detection system.	101
Fig. (6.3): (a) Needle mounted perpendicular on ground plane, (b) the measurement of series connected resistance.	101
Fig. (6.4): Screenshot of oscilloscope single pulse; needle to plane geometry; r=35 μ m, d= 6mm, Uapp= - 5.5kV (a) Single pulse, (b) Train of pulses.	103
Fig. (6.5): V-I characteristics for needle to plane geometry (r=35 μ m, d=6mm).	104
Fig. (6.6): Pulses repetition frequency for needle to plane geometry (r=35μm, d=6mm).	104