

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Clinicopathological and Prognostic Value of PD-L1 in Renal Cell Carcinoma

Thesis

Submitted for Partial Fulfillment of MD Degree in Clinical Oncology and Nuclear Medicine

By

Hoda Sayed Abdel Moneam Elkhodary
Assistant Lecturer of Clinical Oncology, Ain Shams University

Under Supervision of

Prof. Khalid El Husseiny Nasr

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Assist. Prof. Amr Lotfy Farag (R.I.P)

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Assist. Prof. Mai Mohamed Ali Ezz El Din

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Sherif Hassanien Ahmed

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Khalid & Housseing Masr**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his meticulous supervision, valuable instructions and generous help.

I am deeply thankful to Assist. Prof. Mai Mohamed Ali Ezz El Din, Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

Last but not least my sincere thanks and appreciation to **Dr. Sherif Hassanien Ahmed**, Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, great help through this study.

Thanks to Ass. Prof. Marwa Mosaad Mohamed Shakweer, Assistant Professor of Pathology, Faculty of Medicine, Ain Shams University, for her great help throughout this study and for her valuable contribution.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Hoda Sayed Abdel Moneam Elkhodary

Special thanks are due to Assist. Prof.

Amr Lotfy Farag, Assistant Professor of

Clinical Oncology and Nuclear Medicine,

Faculty of Medicine, Ain Shams University,

for his sincere efforts, fruitful encouragement

may ALLAH put peace on his Soul

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Epidemiology	4
Risk Factors	9
Pathology	15
Tumor Immunology	23
 Molecular Biology and Prognostic Factors 	29
Diagnosis and Staging	38
Management	
Patients and Methods	53
Results	57
Discussion	77
Conclusion	86
Study Limitations	87
Recommendations	
Summary	89
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table 1:	Classification of renal cell tumors a to the 2016 WHO classification	O
Table 2:	Prognostic models for metastatic RC	C 35
Table 3:	Kidney cancer TNM staging AJCC U	
Table 4:	Patients' characteristics	57
Table 5:	Relationship between PDL1-Tum clinicopathological factors	
Table 6:	Relationship between PDL1-TII clinicopathological factors	
Table 7:	The effect of PD-L1 expression a status on overall survival, 2-year discurvival and progression free survival	ease free

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Age-standardized world incidence kidney neoplasms, by sex	
Figure 2:	Mortality from kidney cancer	6
Figure 3:	Kidney SEER 5-Year Relative Rates, 2011-2017 according to stage	Survival
Figure 4:	Distinct subtypes of RCC	17
Figure 5:	Type 1 papillary renal cell carcinom	a19
Figure 6:	Papillary renal cell carcinoma type 2	2 20
Figure 7:	Mechanism of action of PD-1/L1 cl blockade	-
Figure 8:	Therapeutic evolution and survival of metastatic ccRCC through different eras	the four
Figure 9:	A case of clear cell renal cell carcine moderate to strong mer immunostaining of PDL-1 (score 3).	nbranous
Figure 10:	A case of clear cell RCC with stro expression (score 3)	ng PDL1
Figure 11:	A case of papillary RCC with stro expression (score 3)	
Figure 12:	A case of clear cell RCC with high grade strong PDL1 expression (score	n nuclear
Figure 13:	A case of clear cell RCC with moder expression (score 2)	
Figure 14:	A case of clear cell RCC with moders expression (score 2)	ate PDL1
Figure 15:	A case of clear cell RCC with moders expression (score 2)	ate PDL1

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 16:	A case of clear cell RCC with negative expression in tumor cells expression in TIL	and high
Figure 17:	A case of clear cell RCC with neg expression and high expression in	
Figure 18:	A case of clear cell RCC with neg expression and high expression in	
Figure 19:	Kaplan-Meier curve comparing 2 in PD-L1 tumor cells positionegative group in non-metastatic	ive versus
Figure 20:	Kaplan-Meier curve comparing 2 in PD-L1 TILs positive versu group in non-metastatic patients.	s negative
Figure 21:	Kaplan-Meier curve comparing O tumor cells positive versus negation non-metastatic patients	ve group in
Figure 22:	Kaplan-Meier curve comparing O TILs positive versus negative gre metastatic patients	oup in non-
Figure 23:	Kaplan-Meier curve comparing I L1 tumor positive versus negative metastatic patients	ve group in
Figure 24:	Kaplan-Meier curve comparing I L1 TILs positive versus negative metastatic patients	PFS in PD- re group in
Figure 25:	Kaplan-Meier curve comparing O TILs positive versus negative metastatic patients	S in PD-L1 group in
Figure 26:	Kaplan-Meier curve comparing O tumor cells positive versus negatimetastatic patients	S in PD-L1 ve group in

Tist of Abbreviations

Abb.	Full term
ΔJCC	American Joint Committee on Cancer
	Antigen presenting cell
	Antigen presenting cett Age-standardized rate
	Body mass index
	Clear cell renal carcinoma
	Collecting duct carcinoma
	Chromophobe RCC
	C-reactive protein
	Cytotoxic T-lymphocyte-associated protein 4
	Disease free survival
	Epidermal growth factor receptor
	Food and Drug Administration
FDG-PET	Fluorodeoxyglucose positron emission
ECED4	tomography
	Fibroblast growth factor receptor-1
	Fumarate hydratase
	Gastrointestinal stromal tumors
HLRCC	Hereditary leiomyomatosis and renal cell
	carcinoma
<i>IFNa</i>	
	Immun ohist och emistry
<i>IL-2</i>	Interleukin 2
<i>IMDC</i>	International Metastatic Renal Cell
	Carcinoma Database Consortium
<i>LDH</i>	Lactate dehydrogenase
<i>MHC1</i>	Major histocompatibility complex 1
<i>MiT</i>	Microphthalmia-associated transcription
	Magnetic resonance imaging
	Memorial Sloan Kettering Cancer Center
	Microvascular invasion
	Non-clear cell RCC
NK	

Tist of Abbreviations cont...

Abb.	Full term
MLD.	N
	.Neutrophil-to-lymphocyte ratio
<i>OS</i>	
	.Programmed cell death 1
	.Programmed cell death ligand 1
	.Programmed cell death ligand 2
	.Progression free survival
	.Partial nephrectomy
	.Papillary renal cell carcinoma
<i>PS</i>	.Performance status
<i>RCC</i>	.Renal cell carcinoma
<i>RR</i>	.Relative risk
<i>SDH</i>	.Succinate dehydrogenase
SEER	.Surveillance, epidemiology, and end results
<i>srRCC</i>	.Sarcomatoid RCC
<i>TCR</i>	.T cell receptor
TILs	.Tumor infiltrating lymphocytes
	.Tumor-infiltrating mononuclear immune
	cells
<i>TMB</i>	.Tumor mutational burden
<i>TNM</i>	.Tumor, node and metastasis
tRCCs	.Translocation RCCs
<i>UICC</i>	.Union for International Cancer Control
	.University of California Integrated Staging
	System
<i>VHL</i>	v
	.World Health Organization
χ2	

on

Introduction

Renal cell carcinoma (RCC) accounts for about 2% of cancer diagnoses and deaths globally. 1

It is considered the seventh most common form of neoplasm in the developed world. In the US, The surveillance, epidemiology, and end results (SEER) statistics report that RCC accounts for 4.2% of all cancer diagnoses (almost double the global average). ²

Renal cell tumors represent a group of histologically and molecularly heterogeneous diseases. The histologic classification of renal cell carcinoma (RCC) has significantly changed in the last few decades, many new entities were added based on either characteristic pathologic features or distinctive molecular alterations.³

The major subtypes are clear cell RCC (CCRCC) representing 65–70% of all RCC, papillary RCC (PRCC) 15–20%, and chromophobe RCC (ChRCC)5–7%.³

RCC is considered an immunogenic cancer, with pathologic specimens harboring a high number of tumor-infiltrating lymphocytes (TILs) which are considered manifestations of host immune reactions against cancers. ^{4,5}

PD-1 is a cell surface glycoprotein within the B7 family of T cell costimulatory molecules; it was first described by

Ishida et al in 1992. 6 PDL1, when bound to PD1 protein, leads to downregulation of activated T cells. ⁷

It was suggested that approximately 30% of malignant tumor cells, including RCC among other tumors, express PD-L1 and closely associate with the prognosis of the patients. 8–10

PD-1 protein is mainly expressed on TILs, whereas PD-L1 is expressed on both immune cells and tumor cells. 11

The expression of PDL-1 is currently being investigated as an important prognostic and predictive biomarker; however, it is still not validated alone determining which patients should be offered PD-1/L1 blockade therapy. 12,13

AIM OF THE WORK

Primary end point:

Orrelation of PD-L1 expression both in tumor cells and tumor infiltrating lymphocytes (TILs) with disease free survival (DFS) and Overall survival (OS) for patients with non-metastatic RCC and with Progression free survival (PFS) and Overall survival (OS) for metastatic patients.

Secondary end point:

Correlation of PD-L1 expression in tumor cells and TILs with clinical and pathological features.