

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

COMPREHENSIVE INVESTIGATION OF LOW SALINITY WATERFLOODING IN SANDSTONE AND CARBONATE RESERVOIRS

By

Mohamed Fouad Abd El-Majeed Snosy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Petroleum Engineering

COMPREHENSIVE INVESTIGATION OF LOW SALINITY WATERFLOODING IN SANDSTONE AND CARBONATE RESERVOIRS

By **Mohamed Fouad Abd El-Mageed Snosy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Petroleum Engineering

Under the Supervision of

Dr. Mohamed Helmy Sayyouh

Dr. Mahmoud Abu El Ela

Professor of Petroleum Engineering

Mining, Petroleum, and Metallurgical Engineering Department Faculty of Engineering, Cairo University

Professor of Petroleum Engineering
Mining, Petroleum, and Metallurgical
Engineering Department
Faculty of Engineering, Cairo University

Dr. Ahmed Hamdy El-Banbi

Professor of Petroleum Engineering

Petroleum and Energy Engineering
Department
School of Science and Engineering, the
American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

COMPREHENSIVE INVESTIGATION OF LOW SALINITY WATERFLOODING IN SANDSTONE AND CARBONATE RESERVOIRS

By **Mohamed Fouad Abd El-Mageed Snosy**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in
Petroleum Engineering

Approved by the Examining Committee

Prof. Mohamed Helmy Sayyouh, Thesis Main Advisor

The Mining, Petroleum, and Metallurgical Engineering Department - Faculty of Engineering – Cairo University

Prof. Mahmoud Abu El Ela Mohamed, Advisor

The Mining, Petroleum, and Metallurgical Engineering Department - Faculty of Engineering – Cairo University

Prof. Ahmed Hamdy El-Banbi, External Advisor

The Petroleum and Energy Engineering Department - School of Science and Engineering—the American University in Cairo

Prof. Elsayed Ahmed Eltayeb, Internal examiner

The Mining, Petroleum, and Metallurgical Engineering Department - Faculty of Engineering – Cairo University

Prof. Ismail Shaaban Ismail Mahgoub, External examiner

The Petroleum Engineering Department - Faculty of Engineering – Future University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Mohamed Fouad Abd El-Majeed Snosy

Date of Birth: 10 / 08 / 1985 **Nationality:** Egyptian

E-mail: Mfsnosy@yahoo.com **Phone:** +2 01000110895

Address: 5 Youssef Soliman Street, Giza, Egypt

Registration Date: 01 / 03 / 2015 **Awarding Date:**/2022

Degree: Doctor of Philosophy

Department: Mining, Petroleum and Metallurgical Engineering

Supervisors:

Prof. Mohamed Helmy Sayyouh (Thesis main advisor) Prof. Mahmoud Abu El Ela Mohamed (Advisor) Prof. Ahmed Hamdy El-Banbi (External Advisor)

Examiners:

Prof. Mohammed Helmy Sayyouh (Thesis main advisor)

Prof. Mahmoud Abu El Ela Mohamed (Advisor)
Prof. Ahmed Hamdy El-Banbi (External Advisor)
Prof. Elsayed Ahmed Eltayeb (Internal examiner)
Prof. Ismail Shaaban Mahgoub (External examiner)

Title of Thesis:

Comprehensive Investigation of Low Salinity Waterflooding in Sandstone and Carbonate Reservoirs

Key Words:

Low Salinity Waterflooding; Smart Waterflooding; Enhanced Oil Recovery; Sandstone Reservoirs; Carbonate Reservoirs

Summary:

The thesis investigated the key parameters of the low salinity waterflooding effect in sandstone and carbonate reservoirs. An experimental work program has been performed using 34 core samples and 11 different water salinities and a comprehensive review of more than 800 flooding experiments from the literature. The study investigates the effects of changing water salinity during both secondary and tertiary stages of waterflooding. It developed important guidelines for screening and designing optimum salinity for waterflooding projects in sandstone and carbonate reservoirs.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date	: /	/2022
Signature:			

Dedication

To the soul of my father

To my dear mother, sweet brother, and sisters,

To my supporting wife,

To my adorable kids Hamza and Anas,

To the soul of Eng. Mohamed Shawky Abd El-Hamid

To my loyal and supportive friends,

And to anyone who had given us a sincere supportive word one day.

Thank you all for being there for me.

ii

Acknowledgments

I would like to express my deep appreciation to **Prof. Dr. Mohamed Helmy Sayyouh,** who was always willing to provide his insights and direction.

I am also deeply grateful to **Prof. Dr. Ahmed El-Banbi** for his valuable and considerable guidance. His deep knowledge with his constant follows up have made this work fulfilled.

Also, special thanks and gratitude to **Prof. Dr. Mahmoud Abu El Ela** for his enormous help, guidance, support, and encouragement in the development of this work.

I would like to thank **Premier Corex laboratory** (**Egypt**) for their support to carry out the experimental work. The authors would also like to thank **Dr. Ahmed Salah and Eng. Yusef Saied** for their help and cooperation.

Table of Contents

LIST OF TABLES	VIII
LIST OF FIGURES	IX
NOMENCLATURE	XII
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1 Introduction	3
2.2 Definition of Low Salinity Waterflooding	3
2.3 Application of Low Salinity Waterflooding on Sandstone Reservoirs	4
2.3.1 Laboratory Studies	4
2.3.2 Field Applications	5
2.4 Application of Low Salinity Waterflooding on Sandstone Reservoirs	7
2.4.1 Laboratory Studies	8
2.4.2 Field Applications	9
2.5 Mechanisms of Low Salinity Waterflooding	9
2.5.1 Fines Migration	9
2.5.2 pH Effects and IFT Reduction	10
2.5.3 Multi-Component Ion Exchange (MIE)	11
2.5.4 Salting In	13
2.5.5 Double Layer Effects	13
2.5.6 Surface Roughness	14
2.5.7 Calcite Dissolution	15
2.5.8 Anhydrite Dissolution	15
2.5.9 Chemical Mechanism	16
2.5.10 Water Micro-Dispersions	16
2.5.11 Osmosis Mechanism	17
2.6 Modeling of Low Salinity Waterflooding	18
2.7 Advantages and Limitations of Low Salinity Waterflooding	20
2 & Concluding Remarks	21

CHAPTER 3: STATEMENT OF THE PROBLEM, OBJECTIVES AND METHODOLOGY	••••
3.1 Statement of The Problem	
3.2 Objectives	
3.3 Methodology	
CHAPTER 4: LOW SALINITY WATERFLOODING IN SANDSTONE RESERVOIRS	
4.1. Introduction	••••
4.2. Database of Previous Flooding Experiments	
4.3. Analysis Devices and Test Methods	
4.4 Discussion	
4.4.1 Salinity Range for The LSWF Applications	
4.4.2. Effect of Water Composition	
4.4.3. Effect of Clays Content and Clay Type	
4.4.4. Effect of Permeability	
4.4.5. Effect of Temperature	
4.4.6. Screening Criteria	
4.5. Statistical Analysis	
CHAPTER 5: LOW SALINITY WATERFLOODING IN CARBONATE RESERVOIRS	
5.1. Introduction	
5.2. Database of Previous Flooding Experiments	
4.3. Analysis Devices and Test Methods	
5.4 Discussion	
5.4.1 Salinity Range for The LSWF Applications	· • • • • •
5.4.2. Effect of Water Composition	
5.4.3. Effect of Permeability and Rock Composition	
5.4.4. Effect of Oil Composition	
5.4.5. Effect of Temperature	
5.5 Statistical Analysis	
CHAPTER 6: LOW SALINITY STEAM INJECTION IN CARBONATE RESERVOIRS	•••
6.1 Introduction	
6.2 Reservoir Description	

6.3 Results and Discussion	71
6.3.1 Effect of LSCW on the Wettability	71
6.3.2 Effect of Anhydrite on the Oil Recovery	71
CHAPTER 7: EXPERIMENTAL SET-UP AND PROCEDURE	75
7.1. Introduction	75
7.2 Equipment	75
7.2.1 Densitometer and Pycnometer	75
7.2.2 Digital Rotational Viscometer	75
7.2.3 Core Samples Cleaning and Drying Tool	76
7.2.4 Porosimeter	76
7.2.5 Permeameter	77
7.2.6 Displacement Apparatus	78
7.2.7 Clay Properties Equipment for Sandstone Core Samples	78
7.3 Materials	79
7.3.1 Core Samples	79
7.3.2 Fluids	81
7.4 Experimental Procedure.	83
7.4.1 Procedure for Sandstone Experiments	83
7.4.2 Procedure for Carbonate Experiments	86
CHAPTER 8: RESULTS AND DISCUSSION FOR THE SANDSTONE EXPERIMENTS	88
8.1 Introduction.	88
8.2 Experimental Results	88
8.2.1 Experimental Results on Sandstone Reservoirs	88
8.2.1.1 Experimental Results of the First Group	88
8.2.1.2 Experimental Results of the Second Group	88
8.2.1.3 Experimental Results of the Third Group	93
8.2.1.4 Experimental Results of the Fourth Group	94
8.2.1.5 Experimental Results of the Fifth Group	95
8.2.2 Experimental Results on Carbonate Reservoirs	96
8.3 Discussion.	99
8.3.1 Effect of the LSWF in the Secondary Recovery Stage	99
8 3 2 Effect of The LSWF in the Tertiary Recovery Stage	103

8.4 Guidelines for LSWF Applications in Egyptian Oil Fields	105
8.4.1 Guidelines for LSWF Applications in Carbonate Reservoirs	107
8.4.2 Guidelines for LSWF Applications in Sandstone Reservoirs	107
CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS	109
9.1 Conclusions.	109
9.2 Recommendations	111
REFERENCES	112
APPENDIX A: PUBLISHED PAPERS	130
A-1 Comprehensive Investigation of Low-Salinity Waterflooding in Sandstone Reservoirs	130
A-2 Impact of the Injected Water Salinity on Oil Recovery from Sandstone Formations: Application in an Egyptian Oil Reservoir	146
A-3 Comprehensive Investigation of Low-Salinity Waterflooding in Carbonate Reservoirs	159
A-4 Role of the Injected Water Salinity and Ion Concentrations on the Oil Recovery in Carbonate Reservoirs	183
APPENDIX B: RAW DATA OF THE EXPERIMENTAL WORK	190
B-1 Raw Data of the Sandstone Core Samples	190
R-2 Raw Data of the Carbonate Core Samples	197

List of Tables

Table 2.1	Due to LSWF Cations	12
Table 2.2	Proposed Mechanisms for Sandstone and Carbonate Reservoirs	18
Table 4.1	Summary of Core Flood Experiments Results Collected from the Literature.	26
Table 4.2	Flooding Devices and Measurements Methods of the Previous Experimental Studies.	29
Table 5.1	Summary of Core Flood Experiments Results Collected from the Literature	45
Table 5.2	Flooding Devices and Measurement Methods of the Previous Experimental Studies.	48
Table 6.1	Average Reservoir Properties	70
Table 6.2	Amott Wettability Index for Core Samples of W-01 and W-02	72
Table 6.3	Average Properties of the Selected Wells	72
Table 7.1	Sandstone Core Samples Properties	80
Table 7.2	Carbonate Core Samples Properties	80
Table 7.3	Clay Content and Cation Exchange Capacity (CEC) of Sandstone Core Samples of Group 2	81
Table 7.4	Composition of the Dissolved Mineral Salts in the Injected Water (Sandstone Experiments)	81
Table 7.5	Oil and Injected Water Properties (Sandstone Experiments)	83
Table 7.6	Composition of the Dissolved Mineral Salts in the Injected Water (Carbonate Experiments)	83
Table 7.7	Oil and Injected Water Properties (Carbonate Experiments)	83
Table 8.1	Results of Core Flooding for Group 1	88
Table 8.2	Results of Core Flooding for Unaged Samples in Group 2	89
Table 8.3	Porosity and Permeability Measurements After Cleaning of the 2nd Group Samples	92
Table 8.4	Oil Recovery in the Secondary and Tertiary Recovery Stages	97

List of Figures

Fig. 2.1	Histogram of LSWF Publications	4
Fig. 2.2	Attraction Between Clay Surface and Oil by Divalent Cations	11
Fig. 2.3	Schematic Model of the Effect of PDI in Carbonate Reservoirs	13
Fig. 2.4	Process of Wettability Alteration by Double Layer Expansion in Carbonate Reservoirs	14
Fig. 2.5	Flow Chart of LSWF Mechanisms in Carbonates	1′
Fig. 3.1	Block Diagram for the Methodology	2
Fig. 4.1	Histograms of Porosity, Permeability, Clay Content, and Pore Volume for the Core samples of Literature Data	2
Fig. 4.2	Incremental Oil Recovery Versus the Injected Water Salinity in the Tertiary and Secondary Recovery Stages	32
Fig. 4.3	Relation between Sodium Adsorption Ratio (SAR) and Additional Oil Recovery	34
Fig. 4.4	Relation between the Exchangeable Sodium Percentage (ESP) and Additional Oil Recovery	34
Fig. 4.5	Relation between Ca ⁺² /Na ⁺ and Additional Oil Recovery	3.
Fig. 4.6	Effects of the Rock Clay Content and Kaolinite Content on the Oil Recovery during the Tertiary and Secondary Recovery Stages	30
Fig. 4.7	Effects of the Rock Permeability on the Oil Recovery during the Tertiary and Secondary Recovery Stages	3
Fig. 4.8	Pareto Chart using the Complete Dataset of the Secondary and Tertiary Stages	4
Fig. 4.9	Pareto Chart Using the Datasets (Without Considering Clay Properties) of the Secondary and Tertiary Stages	4
Fig. 4.10	Pareto Chart using the Complete Dataset of the Secondary Stage	42
Fig. 4.11	Pareto Chart using the Datasets (Without Considering Clay Properties) of the Secondary Stage	42
Fig. 4.12	Pareto Chart using the Complete Dataset of the Tertiary Stage	4
Fig. 4.13	Pareto Chart using the Datasets (Without Considering Clay Properties) of the Tertiary Stage	4
Fig. 5.1	Histograms of Porosity, Permeability, and Incremental Oil Recovery of the Literature Data	4