

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

B11010

A THESIS ENTITLED

STUDIES ON PRETREATMENTS OF BAST FIBERS AND UTILIZATION OF THEIR PROCESSING WASTES VIA CHEMICAL MODIFICATION

PRESENTED BY

ESSAM SAYED ABDELHALIM (M. Sc.)

NATIONAL RESEARCH CENTER

SUBMITTED TO FACULTY OF SCIENCE

FOR THE DEGREE OF Ph. D. IN ORGANIC CHEMISTRY

CAIRO UNIVERSITY GIZA, EGYPT

APPROVAL SHEET FOR SUBMISSION

Title of thesis:

Studies on Pretreatments of Bast Fibers and Utilization of

their Processing Wastes via Chemical Modification

Name of candidate:

Essam Sayed Abdelhalim

This thesis has been approved for submission by the supervisors:

Supervisors:

1- Prof. Dr. Ekhlas M. Abbas

Faculty of Science, Cairo University

Signature:

2- Prof. Dr. Mohammed H. Elrafie National Research Center

Signature:

Prof. Dr. Sadek Abdou

Chairman of Chemistry Department Faculty of Science, Cairo University

ABSTRACT

Name:

Essam Sayed Abdelhalim

Title of thesis:

Studies on Pretreatments of Bast Fibers and Utilization of

their Processing Wastes via Chemical Modification

Degree:

(Ph. D.) Thesis, Faculty of Science, Cairo University 2002

This work aims at finding non-traditional uses for bast fibers. Jute fiber was bleached and then graft copolymerized with methacrylic acid with the aim of increasing its carboxyl content. The so obtained jute fibers could be used successfully in separating dyes and heavy metals from wastewater.

Retted and semi-retted flax fibers were scoured and bleached. The so obtained flax fibers were applied in reinforcing epoxy resin. The measurements showed improvement in the mechanical properties of the composite by successive treatments of flax fibers.

Key Words:

Jute, Bleaching, Grafting, Adsorption, Flax, Composite

Supervisors:

1- Prof. Dr. Ekhlas M. Abbas Faculty of Science, Cairo University

2- Prof. Dr. Mohammed H. Elrafie National Research Center

Prof. Dr. Sadek Abdou

Chairman of Chemistry Department Faculty of Science, Cairo University

CONTENTS

Contents

Subject	Pag
Summary	i-vi
CHAPTER 1	
GENERAL PART	
1.I. Cellulose	1
1.I.1. Sources of Cellulose	1
1.I.2. Cellulose Structure	2
1.I.3. Physical Structure	2 2 3
1.I.4. Chemical Reactions	
1.I.4.1. Esterification	4
1.I.4.1.1. Cellulose Nitrate	4
1.I.4.1.2. Cellulose Phosphate	5
1.I.4.1.3. Cellulose Carbamate	5
1.I.4.1.4. Cellulose Acetate	5
1.I.4.2. Etherification	5
1.I.4.2.1. Carboxymethylation	6
1.I.4.2.2. Hydroxyalkylation	6
1.I.4.2.3. Cyanoethylation	6
1.1.4.2.4. Carbamoylethylation	8
1.I.4.3. Cross-linking	8
1.I.4.4. Graft Copolymerization	8
1.2. Jute Fiber	11
1.2.1. Formation of Fiber and Extraction	12
1.2.2. Fiber Structure	13
1.2.3. Chemical Composition	15
1.2.4. Fine Structure	16
1.2.5. Physical Properties	16
1.2.6. Grading and Classification	17
1.2.7. Photochemical and Thermal Degradation	18
1.2.8. Moisture Effects	19
1.2.9. Fastness to Light	19
1.2.9.1 Undyed Jute	19
1.2.9.2 Dyed Jute	21
1.2.10. Woolenization	21
1.2.11. Mechanical Processing of Jute	22
1.2.11.1 Piecing up	23
1.2.11.2. Softening and Lubrication	23
1.2.11.3. Maturing	24
1.2.11.3. Maturing 1.2.11.4. Carding 1.2.12. Wet Processing of Jute 1.2.12.1 Scouring	24 24 25 25 25 25
1.2.12.1 Scouring	25
1.2.12.2. Bleaching	25

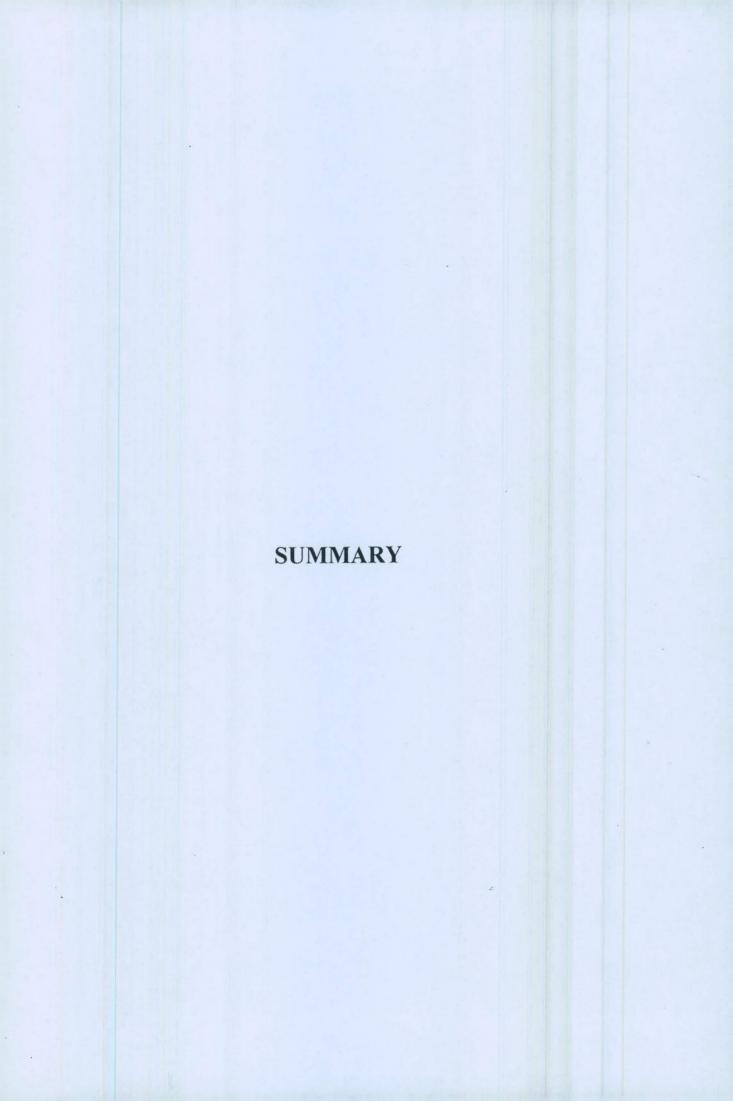
1.3. Flax Fiber	27
1.3.1. Morphological Structure	28
1.3.2. Chemical Structure of Flax	30
1.3.3. Physical Properties of Flax	32
1.3.4. Pretreatment and Bleaching of Flax	33
1.3.5. Tenacity of Fibers as a Function of	
Distance between fixing Grips	33
1.3.6. Zeta-potential	34
1.3.7. Inverse Gas Chromatography (IGC)	36
1.3.8. Tensiometry and Contact Angle Measurement	39
1.3.9. Composite Materials	43
1.3.9.1. Role of Fiber – Matrix Interface	44
1.3.9.2. Acid-base Interface in Fiber-reinforced Composites	44
1.3.9.3. Natural Fibers as Reinforcement for Composites	45
1.3.9.4. Fiber to Matrix Interfaces in Natural	
Fiber Reinforced Composites	47
1.3.10. Tensile Test	48
1.3.11. Flexural Test	49
CHAPTER 2	
BLEACHING OF JUTE FIBER	
2.1. Experimental and analysis	52
2.1.1. Materials	52
2.1.2. Bleaching Processes	52
2.2. Results and Discussion	53
2.2.1. Sodium Chlorite / Triethanolamine	
Salt Activated Bleaching System	53
2.2.1.1 Effect of Triethanolamine hydrochloride Concentration	54
2.2.1.2. Effect of Reaction Temperature	57
2.2.1.3. Effect of Type of Triethanolamine Salt	59
2.2.2. Sodium Chlorite / Hexamethylene Tetramine	
Activated Bleaching System	61
2.2.2.1. Effect of Hexamethylene Tetramine Concentration	61
2.2.2.2. Effect of Reaction Temperature	64
2.2.3. Hydrogen Peroxide / Urea Activated Bleaching System	67
2.2.3.1. Effect of pH	68
2.2.3.2. Effect of Urea and H ₂ O ₂ Concentration	70

CHAPTER 3

UTILIZATION OF SODIUM CHLORITE / POTASSIUM PERMANGANATE REDOX SYSTEM FOR BLEACHING AND GRAFTING METHACRYLIC ACID ONTO JUTE FIBER

3.1. Experimental	75
	75
3.1.1. Materials	
3.1.2. Bleaching process	75
3.1.3. Graft polymerization	76
3.2. Result and Discussion	77
3.2.1. Bleaching	77
3.2.1.1. Effect of Potassium Permenganate Concentration	77
3.2.1.2. Effect of Sodium Chlorite Concentration:	81
3.2.1.3 Effect of Reaction Temperature	84
3.2.2. Grafting of Methacrlic Acid onto Jute Fibres using	
KMnO ₄ /NaClO ₂ System	86
3.3.2.1. Effect of Polassium Permanganate Concentration	87
3.3.2.2. Polymerization Temperature	87
3.3.2.3. Duration of Polymerization	90
3.3.2.4. Sodium Chlorite concentration	-90
3.3.2.5. Monomer Concentration	90
3.3.2.6. Liquor Ratio	95

CHAPTER 4


UTILIZATION OF POLYMETHACRYLIC ACID/JUTE GRAFT COPOLYMER AS ADSORBENT FOR BASIC DYE AND METAL IONS

4.1. Experimental	97
4.2. Results and Discussion	97
4.2.1. Dye Adsorption	97
4.2.1.1. Effect of pH	97
4.2.1.2. Effect of Temperature	98
4.2.1.3. Effect of Material to Liquor Ratio	98
4.2.1.4. Effect of the Graft Yield Percent	99
4.2.2. Metal Ion Adsorption	104
4.2.2.1. Effect of pH	104
4.2.2.2. Effect of M/L Ratio	104
4.2.2.3. Effect of Temperature	104
4.2.2.4. Effect of the Graft Yield Percent	105

CHAPTER 5

SURFACE CHARACTERIZATION OF DIFFERENTLY PRETREATED FLAX FIBERS AND THEIR APPLICATION IN FIBER-REINFORCED COMPOSITE

5.1. Experimental Part	112
5.1.1. Materials	112
5.1.2. Scouring and Bleaching of Flax Fiber	112
5.1.3. Nonwoven preparation	114
5.1.4. Preparation of the Hot-Pressed Plates	115
5.1.5. Tenacity Measurement	116
5.1.6. Fiber Fineness by Image Analysis	116
5.1.7. Infrared Spectroscopy	118
5.1.8. Zeta-potential Measurement	118
5.1.9. Inverse Gas Chromatography	119
5.1.10. Tensile Strength Measurement	121
5.1.11. Flexural Test	121
5.1.12. Flexural Impact	121
5.2. Results and Discussion	122
5.2.1. Percent Loss in Weight	122
5.2.2. Tenacity of Flax Fibers as a Function of	
Distance between fixing Grips	123
5.2.3. Fiber Fineness by Image Analysis	127
5.2.4. Infrared Spectroscopy	132
5.2.5. Zeta-Potential	135
5.2.6. Inverse Gas Chromatography	140
5.2.7. Mechanical Properties of Composite	153
References	164

Summary

Studies on Pretreatment of Bast Fibers and Utilization of their Processing Wastes via Chemical Modification

Increased competition from synthetic fibers has affected all natural fibers. Massive investments have been made by giant petro-chemical complexes to escalate the production of synthetic fibers. Polyamide, polyester and polyolefins have invaded cordage technology, which was once the sole preserve of hard fibers. Armed with such irresistible advantages as cheapness, lightness, durability and steady domestic supply, synthetic fibers are matching on. Facing with this sort of challenge, the producers of long vegetable fibers (bast fibers) are loosing ground.

There are only two major drawbacks that may curb the further invasion of synthetic fibers on areas of domestic and industrial usage.

These are: -

- Their flammability and tendency to produce toxic gases on combustion.
- Difficulties of disposal, which can cause gigantic environmental pollution in further years.

Long vegetable fibers are not as prone to catching fire as are some synthetic fibers; in addition, they burn with less smoke and lethal gases. In the matter of environmental pollution, natural fibers pose no real problems, since they will blend into the soil when they are ultimately thrown away after repeated cycling and re-use. It is therefore a matter of extreme urgency the producers and converters of natural fibers to rationalize fiber and product price-lines and to rectify the technological shortcomings of their products.

i