

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم


قسو

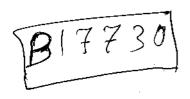
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية

شبكة المعلومات الحامعية



بالرسالة صفحات لم ترد بالأصل

STUDIES ON REARING TECHNOLOGY OF EARLY

INSTARS OF SILKWORM, Bombyx mori L.

by

KARIMAN MAHMOUD MOHAMED

B.Sc. (Agric.), Suez Canal Univ.(1993).

Faculty of Agriculture

Plant Protection Department

THESIS

Submitted in Partial Fulfillment of the Requirement for the M. Sc. Degree in Economic Entomology, Department of Plant Protection

Advisors Committee

Prof. Dr. Mohamed Ahmed Eid

Professor of Economic Entomology

Faculty of Agriculture,

Cairo University

Professor of Economic Entomology

Prof. Dr. Talaat Ali Abu-Hashish

Faculty of Agriculture,

Suez Canal University

Dovis M.

T. A. Alen-Harshis

Dr. Soliman Mohamed Kamel

Assistant Professor of Economic Entomology

Faculty of Agriculture,

Suez Canal University

S.M. Name

2000

APPROVAL SHEET

Studies on rearing technology of early instars of silk worm, Bombyx mori L.

By

Kariman Mahmoud Mohamed

B.Sc. Agric. Sci.

1993

The Thesis has been approved by:

Prof. Dr.

Prof. Dr.

Prof. Dr.

Prof. Dr.

MA Cod S. Sl Mag sara wy

Talout Dlon Hashish

Committee in charge

Date 24/5/2000

CONTENTS

I. INTRODUCTION	1
II. REVIEW OF LITERUTURE	
Part I	
1-Mulberry leaf varieties	3
2-Mulberry leaf quality	11
Dort II	•
1-Rearing box types	16
2-Larval density	18
Part III	
1- Relative humidity	18
2- Light regime	19
III. MATERIALS AND METHODS	22
I- Rearing technique	22
II-Experimental design	23
Part I	
1-Mulberry leaf varieties	23
2-Mulberry leaf quality	23
Part II	
1-Larval density	24
2-Rearing box types	24
Part III	
1- Relative humidity 2- Light regime III-Criteria for evaluation	24
2- Light regime	25
III-Criteria for evaluation	27
Biological aspects	
Biometrics and productivity studies	§27
Biological aspects	
Part I	
I -Effects of mulberry leaf varieties	29
1- Biological aspects studies	
a-Larval duration	
b-Mortality percentages	31
c-Pupal duration	31
d-Adult longevity	
2-Biometrics and productivity studies	34

a-Larval fresh weights	34
b-Silk gland biometrics	35
c-Cocoon, cocoon shell weights and silk ratio	39
1 D. a. 1 Carala analogata	41
e-Adult fresh weights	41
f-Fecundity	42
II. Effect of mulberry leaf quality	44
1-Biological aspects studies	44
a-Larval duration	44
b-Mortality percentages	
c-Pupal duration	47
d-Adult longevity	47
2-Biometrics and productivity studies	49
a-Larval fresh weights	49
b-Silk gland biometrics	52
c-Cocoon, cocoon shell weights and silk ratio	52
d-Pupal fresh weights	55
e-Adults fresh weights	55
f- Fecundity	55
Part II	
IEffect of larval density	58
1-Biological aspects studies	58
a-Larval duration	58
b-Mortality percentages	58
c-Pupal duration	61
d-Adult longevity	61
2-Biometrics and productivity studies	63
a-Larval fresh weights	63
b-Silk gland biometrics	65
c-Cocoon, cocoon shell weights and silk ratio	65
d-Pupal fresh weights	66
d-Pupal fresh weightse-Adults fresh weights	69
f- Fecundity	69
II Effect of rearing box types	71
1-Biological aspects studies	71
a-Larval duration	71
b-Mortality percentages	71
c-Pupal duration	

d-Adult longevity	75
2-Biometrics and productivity studies	75
a-Larval fresh weights	75
b-Silk gland biometrics	77
c-Cocoon, cocoon shell weights and silk ratio	
d-Pupal fresh weights	80
e-Adult fresh weights	80
f-Fecundity	81
Part III	
I. Effect of relative humidity	83
1-Biological aspects studies	83
a-Larval duration	83
b-Mortality percentages	83
c-Pupal durationd-Adult longevity	86
d-Adult longevity	86
2-Biometrics and productivity studies	88
a-Larval fresh weights	88
b-Silk gland biometrics	88
c-Cocoon, cocoon shell weights and silk ratio	91
d-Pupal fresh weights	
e-Adult fresh weights	93
	93
II. Effect of photoperiods	95
1-Biological aspects studies	95
a-Larval duration	
b-Mortality percentages	95
c-Pupal duration	95
e-Adult longevity	99
2-Biometrics and productivity studies	99
a-Larval fresh weights	99
b-Silk gland biometrics	99
c- Cocoon, cocoon shell weights and silk ratio	
d-Pupal fresh weights	
e-Adult fresh weights	104
f- Fecundity	104
7. SUMMARY AND CONCLUSION	106
/I. REFERENCES	114
TI. ARABIC SUMMARY	

To my parents

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to Prof. Dr. Mohamed A. Eid Professor of Economic Entomology at the Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, for his keen supervision, valuable guidance and continuos help and encouragement during the entire course of this investigation.

I am grateful to **Prof. Dr. Talaat Ali Abu- Hashish** Professor of Economic Entomology at Plant Protection Department, Faculty of Agriculture, Suez Canal University, for his help encouragement, his valuable supervision and helped suggestion during the preparation of this thesis.

I would like also to express great thanks **Dr. Soliman M. Kamel** Associate Professor of Economic Entomology at Plant Protection Department, Faculty of Agriculture, Suez Canal University, for his supervision, valuable guidance and his interest and encouragement in this work.

Also I would to thank **Prof. Dr. Yousri M. Ahmed** my Professor and the head of Plant Protection Department and **Prof. Dr. Mohamed A. Tawfik** Professor of Pesticides at the same department, for the provision of all facilities needed to perform this research.

Faithful thanks are also extended to Prof. Dr. Saad Ismail, Professor of Pesticides in the same department, for his valuable guidance, continuos help, and encouragement

I would like to extend thanks to all the staff member of Plant Protection Department for their valuable advice and cooperation throughout this study. Thanks are also due to my colleagues for their help. Special thanks to Mrs. Maha A. Shoieb and Mrs. Naglaa M. Lotfy Assistant Lecturer at the same Dep. For their kind cooperation and support.

Last but not least I would like to thank my family, specially my Parents whom offered many helps and facilities throughout the present work.

INTRODUCTION

INTRODUCTION

Sericulture is one of important agriculture industrial branches. In Egypt, sericulture status revealed that there is a big gab between the present production status and the needs of markets which is clearly shown by the quantities of imported raw silk (71.011 tons) and our local

production (8.25 tons) in 1998, Sayed and Mohamed, (1999).

One reason of this problem in Egypt is the fact that sericulture still depends on the traditional practices, which caused more losing in larvae especially in the early instars, because of its high sensitivity to rearing factors.

Traditional rearing is a common practice to rear the early instars of silkworms up to the advanced stages in the farms, but that rearing method involved a lote of time.

Therefore a new method was devised in which collective rearing of only the early instars is carried out in different centers, after, which the larvae were dispatched to various farmers for rearing up to the advanced stages. This type of rearing called cooperative rearing and it has many advantages, for examples, the labour force is reduced to 50 per cent per individual rearing and from the technical point of view, through cooperative rearing a better stability of sericulture operation can be expected. At the early instars the rearing conditions greatly affect the sericulture operation. Some of these conditions are quality of mulberry leaves, temperature and humidity, so, rearing in boxes has been practised widely Aruga (1994).

In the light of these considerations, early instars of the silkworm Bombyx mori L. were reared with the main objectives focused on the effects of:

Mulberry leaf varieties, mulberry leaf quality, larval destiny, rearing boxes types, relative humidity and light regime.

Also, on certain potential biological, biometrics and productivity aspects as well. These biological aspects include:

Larval duration, mortality percentage, pupal duration, adults longevity.

Where as biometrics and productivity include:

Larval fresh weight, silk gland biometrics, cocoon, cocoon shell weight and silk ratio, pupal fresh weight, adult weight and fecundity.