

Faculty of women for Arts, Science and Education Ain Shams University

Preparation and Investigations of Some irradiated Thermoelectric materials

A Dissertation Submitted for the Degree of Doctor of Philosophy in Science (Ph.D. in Solid State Physics)

By

Mustafa Saeed Ahmed Shalaby

Assistant lecturer at
National Center for Radiation Research and Technology (NCRRT)
Egyptian Atomic Energy Authority (EAEA)
M.Sc. In physics 2015 (Helwan)

Supervised by

Prof. Dr. Hamdia Abd El-Hameed Zayed

Physics department- Women College for Science, Arts and Educations-Ain Shams University

Ass.Prof. Dr. Hany Mohammed Hashim

Physics department - Faculty of science - Helwan University.

Prof. Dr. Lobna Aly Abd El-wahab

Solid state & Electronic Accelerators department -NCRRT-EAEA-Egypt.

Dr. Nashwa Mohmed Mahmoud Yousif

Solid state & Electronic Accelerators department- NCRRT-EAEA-Egypt.

To Physics department 2020

Faculty of women for Arts, Science and Education Ain Shams University

Approval Sheet

Title: Preparation and Investigations of Some irradiated Thermoelectric materials

Name: Mustafa Saeed Ahmed Shalaby

Degree: Doctorate (Ph.D.)

Supervisors:	approved
1-Prof. Dr.Hamdia Abd El-Hameed Zayed Physics department- Women College for Science, Arts and Educations	
2- Prof. Dr. Lobna Aly Abd El-wahab Solid state & Electronic Accelerators departement - NCRRT-EAEA.	
3- Ass.Prof. Dr. Hany Mohammed Hashim Physics department - Faculty of science - Helwan University.	
4- Dr. Nashwa Mohmed Mahmoud Yousif Solid state & Electronic Accelerators departement-	

Faculty of women for Arts, Science and Education

Ain Shams University

Ph.D. thesis

Candidate name: Mustafa Saeed Ahmed Shalaby

Title: Preparation and Investigations of Some irradiated

Thermoelectric materials Degree: Doctorate (Ph.D.)

Supervisors:

1-Prof. Dr.Hamdia Abd El-Hameed Zayed

Physics department- Women College for Science, Arts and Educations

2- Prof. Dr. Lobna Aly Abd El-wahab

Solid state & Electronic Accelerators department -NCRRT-EAEA

3- Ass.Prof. Dr. Hany Mohammed Hashim

Physics department - Faculty of science - Helwan University.

4- Dr. Nashwa Mohmed Mahmoud Yousif

Solid state & Electronic Accelerators department- NCRRT-EAEA

Examiners:

1- Prof. Dr.Hamdia Abd El-Hameed Zayed

Physics department- Women College for Science, Arts and Educations

2- Prof. Dr. Massrat Baker Sedeek

Physics department- Women College for Science, Arts and Educations

3-Prof.Dr.Karam Amin shrshr

Radiation Engineering department- NCRRT-EAEA

4- Prof. Dr. Lobna Aly Abd El-wahab

Solid state & Electronic Accelerators department -NCRRT-EAEA

5- Ass. Prof. Dr. Hany Mohammed Hashim

Physics department - Faculty of science - Helwan University.

To my beloved mother, the most amazing person I have ever known

To my Big Family,

And

My small Family

For their assistance help and

waiting for that day.

Acknowledgment

Thanks to ALLAH Al-Mighty who gave me enough courage to carry out and complete this work Prayer and peace on our Holy Prophet Mohammad (SAW) who is the torch of guidance for humanity for all the times.

I would like to thank **Prof. Dr. Hamdia Zayed**, Physics Department, Women College for Science, Arts and Education, Ain Shams University, for her help, generous advices and valuable discussions which helped me greatly.

Dedications and a word of gratitude for my, **Prof.Dr. Lobna Aly Abd —el wahab**, National Center for Radiation Research and Technology, for her guidance, confidence that will remain a part of my life., for encouraging and helping me to shape my interest and Ideas.

I am so grateful to **Dr. Hany Hashem**, Physics Department, Faculty of Science, Helwan University, for his continuous help, encouragements and facilities offered by him throughout the work. His invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

I am highly indebted to my co-supervisor and my sister. **Dr. Nashwa Mehammed Yousif**, National Center for Radiation Research and Technology, for her kind of assist in preparations, encouragement and extending all possible support in the thesis and the experimental work through her generous advices.

Also, I am very grateful for **Prof.Dr.** Andres Sotelo Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC Universidad de Zaragoza, for his Kindness,

generous and great helps in measuring some samples through his lab in Spain. I appreciate the efforts of **Eng. Hesham Shaker** from the second reactor-Egyptian atomic Energy Authority in the construction of Seebeck Coeffecient homemade system which push the thesis in appropriate form.

I am thankful to my Colleagues in the university lab and in the NCCRT labs *Dr. Gahrieb El Jayad, Dr. soraya Mohammed and Dr. Mohammed Ibraheem and Phy. Mohammed Zaghloul* for their valuable support. Their companionship is real reward for me. My regards are for my father, my brother and my sister takes are also are of their days. The companionship and

My regards are for my father, my brother and my sister who ever dream of this day. The appreciation and encouragement on their part is a real source of guidance for me. My wife **Salwa** and my children **Meaaz** and **Areej** for their great encouragement and love .Finally, I want to thank everyone help me with a word to accomplish this work in the final form.

Acknowledgment

Subject

Contents

Page

List of Figu	ıres	VII
List of Tab	les	XIII
Abstract		XIV
	Chapter One	
1.1.	Thermoelectricity Introduction	1
1.2.	Brief History to Thermoelectricity	3
1.3	Thermoelectric Effects	5
1.3.1	Seebeck Effect	7
1.3.2	Peltier Effect	8
1.3.3	Thomson Effect	9
1.4	Thermoelectric Generation and The efficiency for thermoelectric device	9
1.5	Thermoelectric Materials	. 10
1.6	Current Research Efforts: Synthetic Approaches	11
1.7.	Classical Thermoelectric Materials	14
1.8.	Advances in Thermoelectric Materials	. 15
1.8.1.	Skutterudites (phonon glass-electron crystals)	15

Content

1.8.2.	Catharses	16
1.8.3	Half-Heusler Alloys	16
1.8.4	Silicon-Germanium Alloys	16
1.8.5	Oxide Thermoelectric Materials	17
1.8.5.1.	Layered Cobalt Oxides	17
1.8.5.2	Zinc Oxide-Based Oxides	17
1.8.5.3	Strontium Titanate-Based Perovskite-Type Oxides	18
1.8.6.	Semiconductor TE Materials	19
1.8.6.1.	General properties of Bi ₂ Te ₃	20
1.9.	Thermoelectricity and Low Dimensionality	21
1.9.1.	Embedded Nanoparticles	23
1.9.2.	Thin Film Superlattices	24
1.9.3.	Nanowires	24
1.10.	Towards Organic Thermoelectrics	24
1.10.1	Conducting Polymers	25
1.10.2	Charge Transport in Organic Semiconductors	27
1.10.3	p-Type TE-Conducting Polymers	29
1.10.3.1	Polyacetylene	29
1.10.3.2	Polypyrrole and Polyaniline	30

Content

1.10.4	TE Properties of n-Type Polymers	31
1.10.5	Organic/Inorganic Composites	31
	Chapter Two	
	Literature Survey	
2.1.	Ideal room-temperature thermoelectric material	32
2.2.	Review of ZT enhancement strategies	32
2.2.1.	Alloying	33
2.2.2.	Nanostructuring and heterostructuring	34
2.2.3	Doping	34
2.3.	Preparation Techniques	36
2.4.	Doping effect on n- and p-type BiTe	38
2.4.1.	Repeatability of n-type BiTe	38
2.4.2.	Raman Spectroscopy	39
2.5	Thermoelectric Properties	40
2.5.1	To increase electrical conductivity	41
2.5.2	To enhance thermopower or Seebeck coefficient	42
2.5.3	Thermal conductivity	43
2.6	Figure of Merit	44
2.7	Reviews on Bi ₂ Te ₃	47
2.7.1	Bi ₂ Te ₃ /Polyaniline	53

2.8.	Background of Ionization Radiation	54
2.8.1	Gamma radiation	55
	Chapter Three	
	Experimental Work	
3.1.	Bi ₂ Te ₃ Doped Samples Preparations	57
3.1.	The Preparation methodology	57
3.1.1.1	Synthesis of $Bi_2Te_{2.85}Se_{0.15-x}S_x$	57
3.1.1.2.	PANI/Bi ₂ Te ₃	57
3.2	Gamma Radiation Source	58
3.3.	Structure Characterization	58
3.3.1.	Energy-Dispersive X-ray spectra (EDX)	58
3.3.1	X-Ray Diffraction:	58
3.4.	Morphology Characterizations	59
3.4.1.	Scanning Electron Microscopy (SEM)	60
4.3.2.	Tunneling Electron Microscopy (TEM)	60
3.5.	Raman spectroscopy	60
3.6.	Computing and programming	60
3.6.1.	Lattice parameters calculations	60
3.6.2.	Quantative analysis by Winfit program	60
3.6.3.	Raman fitting Data	60