

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

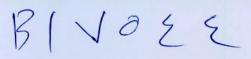
التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار



بالرسالة صفحات لم ترد بالأصل

COMPARATIVE STUDIES ON AVICIDES OF SOME CERTAIN BIRDS

By

FATMA KAMEL KHIDR

B.Sc. (Zoology), Al-Azhar University, 1986 M.Sc. (Zoology), Zagazig University, 1995

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

ZOOLOGY

Supervised by:

Prof.Dr. Anwar E. El-Agamy
Prof. of Zoology
Faculty of Science,
Zagazig University

Prof.Dr. Hassan I. El-Deeb Chief Researcher, Head of Harmful Animals Res. Dept., Plant Protection Res. Inst.

Dr. Ali Mohamed Abd El-Gawad
Assoc.Prof. of Zoology
Faculty of Science,
Zagazig University

Dr. Fatma Sh. El-Mahrouky Senior Researcher, Harmful Animals Res. Dept., Plant Protection Res. Inst.

To my Father

To my Mother

 $T_{o\ my}$ $B_{rothers}$:

Accountant Ibrahim

Dr. Ahmed

To my Sisters:

Dr. Gamalat

Eng. Iman

Doaa

ACKNOWLEDGEMENT

First of all, I do thank GOD for all the gifts he has given me

I would like to express my deep gratitude and sincere appreciation to **Prof. Dr. Anwar El-Husseini El-Agamy**, Professor of Zoology, Faculty of Science, Zagazig University, for supervision, valuable comments, writing and correcting the manuscript.

Deep gratitude is due to **Prof.Dr. Hassan I. El-Deeb**, Head of Agricultural Harmful Animals Department, Plant Protection Research Institute, Agricultural Research Center, Ministry of Agriculture, for his supervision, continuous guidance, providing all needed facilities throughout the whole investigation and in revising the manuscript.

I am also grateful thanks to **Dr. Ali Mohamed Abdel-Gawad**, Associate Professor of Zoology, Faculty of Science, Zagazig University, for supervision, and helpful assistance.

Also my deepest gratitude is due to **Dr. Fatma El-Mahrouky**, Senior Researcher, Plant Protection Research Institute, for her supervision, continuous help and encouragement, revising and vital discussion.

Also my thanks are to **Dr. Magdy Wilson**, Senior Researcher, Plant Protection Research Institute, and **Dr. Shaaban**Abd El-All, Associate Professor of Pesticides, Economic Entomology Department, Faculty of Agriculture, Al-Azhar University, for their helping and they efforts during the preparation of the manuscript.

My sincere thanks are also to all members of Plant Protection Research Institute, for cooperation and encouragement.

CONTENTS

			Page
I.	INT	RODUCTION	1
II.	REV	VIEW OF LITERATURE	3
	1-	Toxicological Studies	3
		1.1- Repellency effect	3
		1.2- Avicidal effect of wild plant extract and pesticide	12
	2-	Biochemical Response	21
	3-	Histopathological Studies	24
III.	MA	TERIALS AND METHODS	28
	1.	Tested compunds	28
		1.1- Wild plant extracts	28
		1.1.1- Preparation of the plant crude extract	29
		1.2- Pesticide compounds	29
	2-	Acclimatization and adaptation procedures	34
		2.1- Repellency tests	34
		2.1.1- One-choice method	34
		2.1.2- Two-choice method	36
		2.2- Preliminary screening on phytochemical	
		constituents in studied bioactive in studied	
		bioactive plant extracts	37
		2.3- R ₅₀ determination	40
		2.4- Toxicity test	41
		2.5- Effect of some compound on the egg production	42
		2.5.1- External egg and egg shell characters	42
		2.5.2- Egg shell component	54
		2.5.2.1- Determination of magnesium	45
		2.5.2.2- Biochemical changes induced in eggs	
		treated with 1/4 LD50 of ethanolic camphor	
		leaves and Methomyl compound:	49
		2.6- The effect of Methomyl pesticide and camphor,	
		Eucalyptus globulus ethanol extract on the	
		activity of some enzymes	52
		2.7- Histopathological studies	59

CONTENTS: Contd.

			Page
IV.	EXF	PERIMENTAL AND FINDINGS RESULTS	60
	1-	Toxicological Studies	60
		1.1- Repellency screening tests	60
		1.1.1- Wild plant extracts	60
		1.1.2- Pesticides	65
		1.2- R ₅₀ , LD ₅₀ and Hazard-factor determinations	70
		1.2.1- Plant extracts	70
		1.2.2- Pesticide compounds	84
	2-	Preliminary Screening of Phytochemical Constituents	
		in Studied Bioactive Extracts	90
	3-	Effect of Some Compounds on Avin Eggs	92
		3.1- On egg production	92
		3.2- On external egg and egg shell chracteristics	95
		3.3- On internal egg characters and its shell components	97
		3.4- Biochemical changes	99
	4-	Biochemistry Studies	102
		4.1- Effect of ethanolic camphor leaves extract	103
		4.1.1- On GOT activity	103
		4.1.2- On GPT activity	106
		4.1.3- On Alkaline phosphatase activity	109
		4.1.4- On total protein	112
		4.2- Effect of Methomyl pesticide on biochemical	
		activity of birds	115
		4.2.1- On GOT activity	115
		4.2.2- On GPT activity	118
		4.2.4- On Alkaline phosphatase activity	121
		4.2.4- On total protein	124
	5-	Histopathological studies	127

CONTENTS: Contd.

		Page
	5.1- Histopathological effects of ethanolic camphor	
	leaves extract	127
	5.2- Histopathological effects of Methomyl pesticide	138
IV.	DISCUSSION AND CONCLUSION	152
	1- Screening compounds for bird repellency	152
	2- Preliminary screening on phytochemical constituents in	
	studied bioactive extracts.	155
	3- Effect of some plant extracts and pesticides on avian	
	eggs production and eggshell characteristics	157
	4- The effect of Methomyl pesticide and ethanolic	
	camphor extract on the activity of some enzymes	158
	5- Histopathological studies	162
V.	SUMMARY	167
VI.	REFERENCES	173
VII.	ARABIC SUMMARY	

Introduction

INTRODUCTION

Bird damage to crops, particularly cereal grains, is a serious problem allover the world. In African countries, in a country like Egypt with a limited cultivated area, food insufficiency is the major problem that faces the over growing human population. The Egyptian government started to approach and solve this problem by the reclamation of desert lands.

Recently, in Egypt, the house sparrow, *Passer domesticus niloticus* are considered the most economic vertebrate pest in the agricultural land, particularly in the newly reclaimed areas until now. These pests were controlled chemically by using synthetic avicide such as repellent compounds (Methiocarb) or insecticides (El-Deeb, 1990 and Abd-El-All, 1995).

Therefore, the widespread use of synthetic organic pesticides since 1945 helped in increasing agricultural production and decreasing the incidence of endemic and epidemic diseases. However, the massive application of pesticides, resulted in build-up pest resistance to these poisons, and also resulted in adverse effect on the environment. The adverse effect include acute and chronic toxicity to humans and non-target organisms, environmental pollution and upsetting the natural balance. Such environmental problems have focused increased interest on pesticides occurring naturally in plants. Ideally, these new types of pest control agents should be active against limited number of species including specific target organisms. Such agents are biodegradable to non-toxic products and can be suitably implementing in programs of integrated

pest management. During the last two decades may attempts have been made to isolate and identify various naturally occurring biologically active compounds possessing pesticidal properties.

However, several of these bioactive components were reported to exhibit synergistic properties to some traditional synthetic pesticides. In addition, several insect feeding deterrents have been isolated from certain plant species. Also, it was reported that many of these naturally occurring substances had arrestant effects on insect growth. The pesticidal and biological activities of plant extracts were extensively studied by several researchers, *i.e.* Butler and Henneberry (1991), Farag et al. (1993), Zidan et al. (1993 & 1994), Abd El-All (1995 & 1998), Ismail (1997) and Salem & Ahmed (1997).

Therefore, the present work was directed to search some biological active constituents and clarify their potent:

1- Toxicity studies:

- 1.1- Repellency and avicidal activities of some wild plant extract and some pesticides.
- 1.2- R₅₀ and LD₅₀ determinations.
- 2- Preliminary screening of phytochemical constituents studied in bioactive extracts.
- 3- Effect of some tested compounds on avian eggs.
- 4- Biochemical response of house sparrow and palm dove to ethanolic camphor leaves extract and methomyl pesticide.
- 5- Histopathological studies.

Review of Literature