

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

A Comparative study between Nebulized Ketamine, Nebulized Dexmedetomidine and Topical Lidocaine as Premedications for Flexible Fiberoptic Bronchoscopy in Pediatrics

AThesis

Submitted for the Partial Fulfillment of the Requirements of Master Degree in Anesthesiology

\mathfrak{P}_{χ} Abdelhamid Ahmad Elhawary $_{M.B.B.Ch}$

Supervisors

Prof. Amr Mohamed Elsaid

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Alfred Maurice Said

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Tarek Samir Shabana

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, thanks to Allah, most merciful and compassionate. Without the help of Allah, nothing could be done.

I would like to express my sincere gratitude and deep appreciation to **Prof. Amr Mohamed Elsaid**, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his continuous scientific guidance. Words cannot adequately express my great thanks and gratitude to him.

I would like to express my sincere gratitude to **Dr. Alfred**Maurice Said, Assistant Professor of Anesthesiology, Intensive
Care and Pain Management, Faculty of Medicine, Ain Shams
University, for his valuable help, cooperation and
encouragement without which this work wouldn't be
completed.

I am delighted to express my deep gratitude and sincere thanks to **Dr. Tarek Samir Shabana**, Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his great help, endless support and kind supervision throughout the period of work.

Abdelhamid Ahmad Elhawary

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	4
Review of Literature	
The Pediatric Airway	5
Ketamine	11
Dexmedetomidine	18
Flexible Bronchoscopy	23
Patients and Methods	30
Results	37
Discussion	49
Summary	55
Conclusion	59
Recommendations	60
References	61
Arabic Summary	

List of Abbreviations

Abb.	Full term
ASA	American Society of Anesthesiologists
CNS	Central nervous system
DBP	Diastolic blood pressure
DEX	Dexmedetomidine
ECG	Electrocardiography
FDA	Food and Drug Administration
HDU	High Dependency Unit
HR	Heart rate
IQR	Interquartile range
LMA	Laryngeal Mask Airway
MBP	Mean arterial blood pressure
NIBP	Non-invasive blood pressure
NMDA	N-methyl-D-aspartate
PACU	Post Anesthesia Care Unit
PCP	Phencyclidine
PSAS	Parental separation anxiety scale
SBP	Systolic blood pressure
SD	Standard deviation
SO_2	${ m O}_2$ saturation
TPO	Tracheobronchopathia osteochondroplastica

List of Tables

Table No.	Title	Page No.
Table (1):	Pharmacokinetics of ketamine	12
Table (2):	Indications and Contraindications of ke	etamine17
Table (3):	Patients' characteristics, ASA physicand duration of procedure of the groups.	studied
Table (4):	Incidence of moderate to severe correspiratory complications in the groups.	ugh and studied
Table (5):	Sedation score in the studied groups.	
Table (6):	Parental separation anxiety scale (I the studied groups	
Table (7):	Mean heart rate in the studied group	s45
Table (8):	Mean arterial blood pressure in the groups	
Table (9):	Mean propofol requirements in the groups	

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Artistic rendering of infant airway Artistic rendering demonstrating	proper
	technique of Macintosh (a) and Maryngoscope blades	
Figure (3):	Structure of ketamine	11
Figure (4):	Diagram of NMDA (excitatory) channel complex	
Figure (5):	Ultrasound images of hyoid bone	
Figure (6):	Ultrasound-guided superior larynge block.	
Figure (7):	Ultrasound-guided translaryngeal bl	ock29
Figure (8):	Ultrasound image of cricoid cartilage cartilage, sagittal plane, and cric	cothyroid
Figure (9):	membrane	
•	Incidence of moderate to severe coustudied groups	gh of the
Figure (11):	Incidence of moderate to severe coustudied groups	gh of the
Figure (12):	Incidence of laryngospasm of the groups	
Figure (13):	Incidence of bronchospasm of the groups	
Figure (14):	Incidence of desaturation of the groups	
Figure (15):	Sedation score of the studied groups.	43
Figure (16):	Parental Separation Anxiety Scale (the studied groups	
Figure (17):	Mean heart rate of the studied group	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (18):	Mean arterial blood pressure of groups	
Figure (19):	Mean propofol requirement of groups	the studied

Introduction

Flexible fiberoptic bronchoscopy remains an invaluable tool in the evaluation and management of infant and pediatric respiratory disease. Because of their developmental capabilities, children generally require general anesthesia for this procedure (*Terkawi et al., 2016*).

Anesthetic strategies in pediatric fiberoptic bronchoscopy should aim at minimizing respiratory complications related to the procedure desaturation, hypoxemia, as oxygen cough, bronchospasm, trauma and obstruction of the airway. An ideal premedication is one that provides satisfactory sedation in addition to minimizing such complications (Berkenbosch et al., 2004). This could be achieved by using the inhalation route for administration of sedative drugs. Inhalation of nebulized drug is an alternative method of administration that is relatively easy to set up, does not require venipuncture, and is associated with high bioavailability of the administered drug (Zanaty and El Metainy, 2015).

Preprocedural sedation is of great importance in children undergoing bronchoscopic procedures to alleviate anxiety and distress, minimize separation anxiety and allow for smooth induction of anesthesia. Sedative premedication in children is commonly administered via the oral, rectal, sublingual, and intranasal routes with varying degrees of patient acceptance (*McCormick et al.*, 2008).

Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that produces a state of sedation, anesthesia, immobility, analgesia, amnesia, and dissociative anesthesia (Cortiñas et al., 2010). Ketamine nebulization has a few advantages over oral administration; it spares the patient from the bitter taste of ketamine; much smaller volume is required as opposed to larger volumes required for oral with risk of aspiration if accidentally swallowed; hence better patient cooperation is likely. Owing to its local anesthetic properties at higher doses, nebulized ketamine has a potential role in preventing postoperative sore throat (Ahuja et al., 2015).

highly Dexmedetomidine (DEX), a selective $\alpha 2$ agonist, adrenergic receptor has a favorable more pharmacokinetic profile than clonidine (Pan et al., 2016). Previous studies have reported that DEX, as compared with midazolam, propofol, fentanyl, and remifentanil, could be safely and effectively used for bronchoscopic procedures (Liao et al., 2012, Ryu et al., 2012). Administration of dexmedetomidine through inhalational route could be a new promising noninvasive method. The bioavailability of dexmedetomidine is 65% and 82% through nasal and buccal mucosa, respectively, following nebulization (Mason and Lerman, 2011).

Lidocaine, reversibly blocks nerve conduction near the site of administration by targeting free nerve endings in the mucosa, thereby producing temporary loss of sensation in a limited area, this is achieved by decreasing nerve cell

membrane permeability to sodium ions, thus decreasing depolarization and increasing excitability threshold until the ability to generate an action potential is lost (Heavner, 2007).

The most common upper airway anaesthetic procedure in current use is a metered dose lignocaine spray, given in repeated dosages immediately prior to the procedure (Kirkpatrick, 1989).

AIM OF THE WORK

The aim of this study is to compare between the efficacy and safety of nebulized ketamine, nebulized dexmedetomidine and topical lidocaine as premedication for flexible fiberoptic bronchoscopy in pediatrics.

Chapter 1

THE PEDIATRIC AIRWAY

The airway of the pediatric patient differs in many ways which impact the anesthesiologist's management of the airway. Predictably, these differences are most pronounced at birth and the most unfamiliar (non-adult like) airway is encountered in neonates and infants under 1 year of age (*Heinrich et al.*, 2012).

The first anatomical difference between the pediatric and adult patient becomes important when positioning the child prior to or immediately after the induction of anesthesia. The head of a pediatric patient is larger relative to body size, with a prominent occiput. This predisposes to airway obstruction in asleep children, because the neck is in flexed when they lie on a flat surface. A folded towel is often required as a shoulder roll to achieve a neutral position of the neck and open up the airway. This is demonstrated visually in **Figure 1**. The larger occiput combined with a shorter neck makes laryngoscopy relatively more difficult by providing obstacles to the alignment of the oral, laryngeal, and tracheal axes (*Carr et al., 2001*).