

Intramyometrium Autologous Platelet-Rich Plasma Injection after Primary caesarean Section for Promotion of caesarean Scar Healing: A Double Blind RCT

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

\mathfrak{P}_{γ} Eslam Abdelsalam Elkoumy

Faculty of Medicine – MUST University 2016 Resident of Obstetrics and Gynecology at MUST University Hospital

Under supervision of

Prof. Tarek Fathy Tamara

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Radwa Rasheedy Ali

Lecturer of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Mohamed Elsayed Elhodiby

Lecturer of Obstetrics and Gynecology Faculty of Medicine – MUST University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

Words could never express my gratitude, appreciation and respect to my professors and colleagues. Their endless support in every moment of my work was the cornerstone of enthusiasm and success.

I'd like to start by sending my deepest respectful thanks and profound gratitude to my spiritual father and teacher **Prof. Tarek**Fathy Tamara, Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work. My respect and admiration to his on professional and personal levels have no limits.

I am also delighted to express my deepest gratitude and thanks to **Dr. Radwa Rasheedy Ali,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, for her kind guidance, valuable instructions, and her sincere efforts. I owe him much for her help, support and her simplicity in handling matters.

I am deeply thankful to **Dr. Mohamed Elsayed Elhodiby,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, MUST University, for his active participation and guidance, and his instructions helped put my foot on the right track, and I finished this work as possible.

Special thanks to all patients on whom and for whom this work has been done and without them it was never going to appear.

No words can describe the support and the encouragement of My Lovely Family.

Eslam Abdelsalam Elkoumy

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Protocol	
Introduction	1
Aim of the Study	4
Review of Literature	
Caesarean Section	5
Caesarean Scar Defect	21
Autologous Platelet-Rich Plasma	41
Patients and Methods	55
Results	72
Discussion	88
Summary & Conclusion	102
Recommendations	106
References	107
Arabic Summary	

List of Abbreviations

Abb.	Full term
BMI	Body mass index
BFGF	. Basic fibroblast growth factor
CAESAR	Caesarean section surgical techniques: a randomised factorial trial
CI	. Confidence interval
CS	. Caesarean section
CSD	. Caesarean scar Defect
CSs	. Caesarean sections
CTG	Cardiotocography
CVD	. Cardiovascular disease
DEPA	Dose of the injected platelets, efficiency of production, purity of the PRP and activation of the PRP
EFM	Electronic fetal monitoring
GDM	. Gestational diabetes mellitus
GIS	Gel instillation sonohysterography
HIV	Human immunedeficiency virus
HSG	. Hysterosalpingography
IVF	In vitro fertilization
LGA	. Large for gestational age
MSC	. Mesenchymal stem cells
NICE	National Institute for Health and Care Excellence
PDGF	Platelet-derived growth factor
PRP	. Platelet rich plasma
RCOG	. Royal College of Obstetricians and Gynaecologists
RCT	Randomized clinical trial
RR	. Relative risk
SCSH	Saline contrast sonohysterography

List of Abbreviations Cont...

Abb.	Full term
STROBE	Strengthening the Reporting of Observational Studies in Epidemiology
TOLAC	. Trial of labour after caesarean
TVS	. Transvaginal sonography
US	. Ultrasonography
UTI	. Urinary tract infection
VEGF	. Vascular endothelial growth factor
VTE	. Venous Thromboembolism
WBCS	. White blood cells
WHO	. World health organization

List of Tables

Table No.	Title	Page No.
Table (1):	Platelet-containing preparations	
Table (2):	DEPA classification of PRP preparatio	ons 46
Table (3):	Basic demographic and characteristics in the two study groups	
Table (4):	Baseline labouratory findings amor studied groups	-
Table (5):	Incidence and shape of niche amor studied groups as assessed with both sonography and TVS	saline
Table (6):	Evaluation of the CS scar in both groups	•
Table (7):	Per protocol analysis of different event	rates 84
Table (8):	Intention to treat analysis of different rates	
Table (9):	Agreement between TVS and sonography in the total sample reg niche depth and width:	arding
Table (10):	Agreement between TVS and sonography in the total sample reg shape	arding
Table (11):	Complications of salinehysterogramong the studied groups.	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Estimated frequency of and trecaesarean section use, as a propor livebirths between 2000 and 2015.	tion of
Figure (2):	Caesarean section rates	7
Figure (3):	Ultrasound seans showing the common niche shapes	
Figure (4):	Niche measurements in the longit	
Figure (5):	Laparoscopic view on a recontaining large niche that is locathe lower cervix	ated in
Figure (6):	Schematic diagram of incomplete of the myometrium	
Figure (7):	Laparoscopic view niche	28
Figure (8):	Macroscopic image of a uterus varietie, removed by laparoscopy be of abnormal uterine bleeding dysmenorrhea	ecause g and
Figure (9):	Laparoscopic view on adhesions be the lower uterine segment an bladder at the site of a niche	d the
Figure (10):	Hysterosalpingogram in 40-ye woman shows large caesarean a CSD at utenne isthmus (arrows)	section
Figure (11):	TVS image showing remyometrium and CSD	
Figure (12):	SCSH performed in a patient follo Caesarean section revealed the ex- of a dehiscence at the site of the u scar.	istence uterine

List of Figures Cont...

Fig. No.	Title Page I	No.
Figure (13):	Image of a niche using trans-vaginal ultrasound in mid-sagittal and transversal plane and a schematic diagram of a niche and Hysteroscopic image	33
Figure (14):	Hysteroscopic view of a CSD	37
Figure (15):	Laparoscopic excision and repair of the CSD	39
Figure (16):	Laparoscopic view of the CSD with a probe inserted into the cervix	40
Figure (17):	PRP preparation including centrifugation using (SIGMA model 2-16P which made in Germany) and activation (gelling) using calcium chloride	62
Figure (18):	Showing the sites and depth of injecton	63
Figure (19):	Tray set-up for saline contrast sonohysterography	65
Figure (20):	Dimensions of apparent CSD	66
Figure (21):	Scar thickness by saline sonohysterography with appearance of scar niche	66
Figure (22):	Showing the residual myometrial thickness	67
Figure (23):	Anterior mymetrial thickness and residual myometrial thickness	67
Figure (24):	Showing the residual myometrial thickness	68
Figure (25):	SCSH showing depth, width, anterior myometrial thickness and residual myometrial thickness	68

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (26):	Anterior myometrial thickness residual mymetrial thickness	
Figure (27):	Anterior myometrial thickness residual mymetrial thickness	
Figure (28):	Participant flow through the study	772
Figure (29):	Incidence of niche among the s groups as assessed by saline sonog	
Figure (30):	Incidence of niche among the s groups as assessed by TVS	
Figure (31):	Different niche shape among the s groups by TVS and saline sonogra	
Figure (32):	Different niche shape among the s groups saline sonography	
Figure (33):	Niche depth among the studied gre	oups81
Figure (34):	Niche width among the studied gr	oups 81
Figure (35):	Anterior myometrial thickness the studied groups	_
Figure (36):	Residual myometrial thickness the studied groups	
Figure (37):	Healing ratio among the studied g	roups 83
Figure (38):	Complications of salinehystero among the studied groups	· • •

Introduction

Vaesarean scar defect (CSD) is associated with increased Ψ risk of uterine rupture, abnormal placental implantation, uterine scar dehiscence in subsequent pregnancies and scar ectopic pregnancy, also CSD are reported to be associated with abnormal uterine bleeding and post menstrual spotting (Uppal et al., 2011).

Uterine wound healing is of great importance to achieve healthy future pregnancy and to allow for vaginal birth after caesarean section (CS), hence minimizing the rate of repeated caesarean sections (Miller et al., 1997).

Platelet rich plasma (PRP) is an autologous product derived from whole blood through the process of gradient density centrifugation. Autologous PRP has been shown to be safe and effective in promoting the natural processes of wound healing, soft tissue reconstruction, muscle healing, bone reconstruction and augmentation (Smith et al., 2007).

Recently, PRP has been used to promote endometrial growth and improve pregnancy outcome during in vitro fertilization (Chang et al., 2015).

as a fibrin tissue PRP functions adhesive haemostatic and tissue sealing properties, its platelets provide a unique ability to promote wound healing through growth

factors. PRP accelerates endothelial, epithelial and epidermal regeneration, stimulates angiogenesis, promotes soft tissue healing and reverses the inhibition of wound healing caused by glucocorticoids. The high leukocyte concentration of PRP has an added antimicrobial effect. Since PRP is an autologous blood product, it carries no risk of transmitting infectious diseases (Smith et al., 2007).

While ultrasonography (US) is of great value in scar assessment in pregnant uterus (Cheung, 2005), its role in scar assessment in non-pregnant uterus is limited. Saline contrast sonohysterography (SCSH) is the method of choice for assessing the scar in non-pregnant uterus; in which the US of the uterus is enhanced by instillation of fluid into the uterine cavity to provide anechoic contrast medium. Thus, SCSH combines the advantages of both US and hysterosalpingography (Elsayes et al., *2009*).

The evolution of SCSH has contributed significantly in the assessment of the uterine cavity (De Kroon et al., 2003); it can be performed 6-12 weeks after caesarean section using gel or saline instillation (Van Der Voet et al., 2014a), to evaluate the thickness of the residual myometrium, thickness of myometrium bordering the scar, depth of the filling defect in the scar (niche) and scar related intrauterine adhesions (Regnard et al., 2004).

Sonohysterography has an overall accuracy of 96% in the diagnosis of CSD; and 91% in the diagnosis of intrauterine adhesions. In addition, the procedure of SCSH is well-tolerated, cost effective, not time-consuming, and can be performed as an office based gynaecological practice (Fabres et al., 2003).

The current study investigated the effect of platelet rich plasma on the healing of caesarean section scar evaluated by sonohysterography.

AIM OF THE STUDY

The aim of this study was to assess the efficacy of intramyometrial injection of PRP on uterine wound healing in women undergoing primary caesarean section.

Research question

In patients undergoing elective caesarean section for the first time; will intramyometrial injection of platelet rich plasma be more effective than placebo in improving uterine scar healing.

Research hypothesis

- ✓ **Alternative hypothesis**: intramyometrial injection of PRP is more effective than placebo on uterine scar healing after primary caesarean section.
- ✓ **Null hypothesis**: In women undergoing 1ry CS intramyometrial injection of PRP will have no effect on uterine wound healing

Chapter 1

CAESAREAN SECTION

The caesarean delivery is defined as the birth of a fetus through incisions in the abdominal wall (Laparotomy) and the uterine wall (Hysterotomy) (*Sholapurkar et al.*, 2018).

The terms caesarean section, caesarean delivery, and caesarean birth may be used to describe the delivery of a fetus through a surgical incision of the anterior uterine wall. Caesarean section is a tautology; both words connote incision, Therefore, caesarean birth or caesarean delivery, are preferable terms (*Kapustian et al.*, 2019).

Incidence:

According to the data from 150 countries, the average global rate of CS is 18.6%, ranging from 6.0% to 27.2% in the least and more developed regions, respectively .The lowest rates of CS are found in Africa (7.3%) and more specifically in Western Africa (3%). The highest rates of CS are found in Latin American and the Caribbean (40.5%) and South America is the sub region with the highest average CS rates in the world (42.9%) (*Betrán et al.*, 2016).