

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Faculty of Pharmacy
Department of Pharmacology and Toxicology

Study of the Modulatory Effect of Amiloride on Doxorubicin Induced Neurotoxicity in Rats

A Thesis

submitted in partial fulfillment of the requirements for Doctor of Philosophy Degree in **Pharmaceutical Sciences** (**Pharmacology & Toxicology**)

By Alaa Emam Ali Sadeq

M.Sc. of Pharmaceutical Sciences, Ain Shams University, February 2019,
B.Sc. of Pharmaceutical Sciences, Ain Shams University, May 2015.
Assistant Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy,
Ain Shams University.

Under Supervision of

Dr. Ebtehal El-Demerdash Zaki

Head of Pharmacology and Toxicology Department Professor of Pharmacolgy and Toxicology Faculty of Pharmacy, Ain Shams University

Dr. Samar Saad Eldeen Azab

Professor of Pharmacolgy and Toxicology Faculty of Pharmacy, Ain Shams University

Dr. Doaa Ahmed Elsherbiny

Associate Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

In the name of Allah, The Most Gracious and The Most Merciful, Peace and blessings be upon our Prophet Mohammed and his good followers till the Day of Judgement.

I want to express my deepest thanks and gratitude to my dear **Dr**. **Ebtehal Eldemerdash**, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her generous advice, enthusiastic help, endless support, endless patience, continuous encouragement and profound understanding. I truly appreciate her great help in everything throughout my PhD Degree.

I want to express my deepest thanks and gratitude to **Dr. Samar Azab**, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her enthusiastic help, encouragement, generous attitude, profound understanding and endless support. I have been extremely lucky to have a supervisor who cared so much about my work.

It is my pleasure to express my gratitude to **Dr. Doaa Ahmed**, Associate professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, to whom I owe much for her generous support, continuous guidance and valuable scientific discussion. Dr.Doaa, I simply could not wish for a better or friendlier supervisor.

It is difficult to overstate my gratitude to my colleagues, co-workers and all the department of Pharmacology and Toxicology in the faculty of pharmacy, Ain Shams University, for their continuous support, generous attitude and indispensable help.

Finally my deepest everlasting thanks and appreciation are directed to my dear parents, beloved husband, daughters, grandmother, brothers, all my family and friends for their understanding, endless patience and encouragement when it was most required, to them I dedicate this thesis.

To everyone who made this work possible, I am indeed grateful.

Alaa Emam

Cognitive impairment or "chemobrain" is a troublesome adverse effect which had been increasingly reported by cancer patients after doxorubicin (DOX) chemotherapy. Notably, Hypertension, a very common comorbidity in cancer patients, could pose a greater risk for negative cognitive outcomes. Amiloride (AML) is an antihypertensive, potassium-sparing diuretic that has been proven to be neuroprotective in different experimental models; this can be attributed to its ability to inhibit different ion transporters such as Na⁺/H⁺ exchanger (NHE), which upon excessive activation can result in intracellular cationic overload, followed by oxidative damage and cellular death. Accordingly, this study was designed to investigate the potential neuroprotective effect of AML against DOX-induced chemobrain and to elucidate possible underlying mechanisms. Briefly, Histopathological examination and neurobehavioral testing (Morris water maze, Y maze and passive avoidance test) showed that AML co-treatment (10mg/kg/day) markedly attenuated DOX (2mg/kg/week)-induced neurodegeneration and memory impairment after 4 weeks of treatments. We found that DOX administration up-regulated NHE expression and increased lactic acid content in the hippocampus which were markedly opposed by AML. Moreover, AML DOX-induced neuroinflammation and mitigated decreased hippocampal tumor necrosis factor-α level, nuclear factor kappa-B, and cyclooxygenase-2 expression. Additionally, AML counteracted DOXinduced hippocampal oxidative stress as indicated by normalized malondialdehyde and glutathione levels. Furthermore, AML halted DOXinduced hippocampal apoptosis as evidenced by decreased caspase-3 activity and lower cytochrome c immunoexpression. Our results in addition to the previously reported antitumor effects of AML and its ability to mitigate cancer resistance to DOX therapy could point toward possible new repositioning scenarios of the diuretic AML especially regarding hypertensive cancer patients.

KEY WORDS: Doxorubicin, Amiloride, Hypertension, Chemobrain, Na⁺/H⁺ exchanger

LIST OF CONTENTS

	Page
LIST OF ABBREVIATIONS	III
LIST OF TABLES	VI
LIST OF FIGURES	VII
N. W. D. O. D. V. C. W. V.	
INTRODUCTION	1
1. Doxorubicin (DOX)	1
1.1. Chemistry	1
1.2. Pharmacokinetics	2
1.3. Pharmacodynamics	5
1.4. Pharmacological uses, dosing and dosage forms	7
1.5. Toxicology	8
2. Doxorubicin-induced chemobrain	12
2.1. Background	12
2.2. Mechanisms	14
2.3. Risk factors	22
2.4. Diagnosis	24
2.5. Management	26
3. Amiloride (AML)	32
3.1. Chemistry	32
3.2. Pharmacokinetics	33
3.3. Pharmacodynamics	35
3.4. Pharmacological uses, dosing and dosage forms	44
3.5. Amiloride as a promising neuroprotectant	44
3.6. Amiloride in oncology	49
3.7. Adverse effects	51
AIM OF THE WORK	52

MATERIALS AND METHODS	53
1. Experimental design	53
2. Materials	57
3. Methods and experiments	64
3.1. Behavioral tests	64
3.2. Assessment of neurodegeneration	71
3.3. Assessment of oxidative stress biomarkers	72
3.4. Assessment of inflammation biomarkers	78
3.5. Assessment of the apoptosis biomarkers	85
3.6. Determination of hippocampal tissue lactic acid content	90
3.7. Gel Electrophoresis and Immuno-blot analysis of Na ^{+/} H ⁺	
exchanger-1(NHE-1) protein	92
3.8. Statistical analysis	97
RESULTS	98
1. Behavioral tests	98
2. Neurodegeneration	114
3. Oxidative stress biomarkers	121
4. Inflammation biomarkers	125
5. Apoptosis biomarkers	132
6. Hippocampal tissue lactic acid content	137
7. Hippocampal NHE-1 protein expression	137
DISCUSSION	141
SUMMARY AND CONCLUSIONS	150
	150
REFERENCES	156

LIST OF ABBREVIATIONS

Abbreviation	Term
°C	Degree Celsius
μl	Micro liter
μg	Micro gram
μmol	Micro mole
A sample	Sample absorbance
A standard	Standard absorbance
Ag	Antigen
AML	Amiloride
ANOVA	Analysis of variance
ApoA-1	Apolipoprotein A-1
ASIC	Acid sensing ion channel
ATP	Adenosine-5'-triphosphate
Αβ	Amyloid beta protein
BBB	Blood-brain barrier
BSA	Bovine serum albumin
Ca ²⁺	Calcium
CA	Cornu Ammonis
CAT	Catalase
cm	Centimeter
CNS	Central nervous system
COX-2	Cyclooxygenase- 2
CSF	Cerebrospinal fluid
Cu	Cupper
DTNB	5,5'-Dithiobis(2-nitrobenzoic acid)
DNA	Deoxyribonucleic acid
DOX	Doxorubicin
ECL	Enhanced Chemiluminescence
EEG	Electroencephalogram
ELISA	Enzyme linked immunosorbent assay
ENaC	Epithelial sodium channel
FDA	Food and drug administration
Fe	Ferrous
g/gm	Gram
GSH	Glutathione reduced
H ⁺	Hydrogen
hr	Hour

Abbreviation	Term
H&E	Hematoxylin and Eosin
H ₂ O	Water
H_2O_2	Hydrogen peroxide
HRP	horseradish peroxidase
i.p.	Intraperitoneal injection
IHC	Immunohistochemical
IL-6	Interleukin- 6
IL-1β	Interleukin- 1 Beta
IRP-1	Iron Regulatory Protein-1
\mathbf{K}^{+}	Potassium,
Kg	Kilogram
LPS	lipopolysaccharide
M	Molar
MDA	Malondialdehyde
mg	Milligram
min	Minute
ml	Milliliter
mM	Millimolar
mmol	Millimole
MnSOD	Manganese Superoxide Dismutase
MPP+	1-methyl-4-phenylpyridinium
MPTP	Mitochondrial Permeability Transition Pore
MWM	Morris water maze
Na ⁺	Sodium
Na ⁺ -K ⁺ -ATPase	Sodium Potassium ATP pump
NF-κB	Nuclear factor-kappa b
NHE	Sodium/Hydrogen Exchanger
NCX	Sodium/Calcium Exchanger
ng	nanogram
nm	Nanometer
nmol	Nanomole
O.D	Optical density
PA	passive avoidance
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffer saline
рНі	intracellular pH
PPE	Palmar-Plantar Erythodysesthesia
PVDF	Polyvinylidene Fluoride
pNA	Para -nitro aniline

Abbreviation	Term
R.T	Room temperature
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
s/sec	Second
SAP	Percent of spontaneous alternation
SD	Standard deviation
SDS	Sodium dodecyl sulfate
SOD	Superoxide dismutase
TAE	Total number of arm entries
TEMED	Tetramethylethylenediamine
TBA	Thiobarbaturic acid
TBS	Tris buffered saline
TBST	Tris Buffered Saline-Tween
TMB	Tetramethylbenzidine
TNF-α	Tumor necrosis factor-alpha

LIST OF TABLES

Table No.	Title	Page
1	Effect of AML and/or DOX on locomotor activity	99
2	Effect of AML and/or DOX on the escape latency (sec) during the 4 training days in Morris Water Maze	102
3	Effect AML and/or DOX on time spent by rats in target quadrant during the probe trial in Morris Water Maze	103
4	Effect of AML and/or DOX on Y-maze percent of spontaneous alternation (SAP)	107
5	Effect of AML and/or DOX on total number of arm entries (TAE) in Y maze	108
6	Effect of AML and/or DOX on step through latency in passive avoidance test	112
7	Effect of AML on number of intact neurons per field in the hippocampus (CA2 and CA3) of DOX-treated rats	118
8	Effect of AML on hippocampal GSH and MDA levels in DOX-treated rats	122
9	Effect of AML on hippocampal TNF-α levels in DOX-treated rats	129
10	Effect of AML on hippocampal caspase-3 activity in DOX-treated rats	135
11	Effect of AML on hippocampal lactic acid content in DOX-treated rats	138