

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

B1 N. 10

IMPROVING ANAEROBIC SLUDGE DIGESTER EFFICIENCY BY MIXING SEWAGE SLUDGE WITH AGRICULTURE RESIDUES

A thesis
Submitted to the Faculty of Engineering
Cairo University for the Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in
Public Work Engineering

by

AYMAN MOHAMED FOUAD IBRAHIM

M.sc. in civil Engineering

PUBLIC WORK DEPARTMENT
FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
January 2007

IMPROVING ANAEROBIC SLUDGE DIGESTER EFFICIENCY BY MIXING SEWAGE SLUDGE WITH AGRICULTURE RESIDUES

A thesis
Submitted to the Faculty of Engineering
Cairo University for the Fulfillment
of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEEING

by

AYMAN MOHAMED FOUAD IBRAHIM

M.sc. in civil Engineering

supervisors

Prof. Dr. EZZAT ABDEL SHAFY HASANEEN

Professor of Sanitary and Environmental Engineering Faculty of Engineering, Cairo University, Giza, Egypt

DR. EHAB M. ATTAIA RASHED

Associate Professor of Sanitary and Environmental Engineering Faculty of Engineering, Cairo University, Giza, Egypt

PUBLIC WORK DEPARTMENT
FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
January 2007

IMPROVING ANAEROBIC SLUDGE DIGESTER EFFICIENCY BY MIXING SEWAGE SLUDGE WITH AGRICULTURE RESIDUES

A thesis
Submitted to the Faculty of Engineering
Cairo University for the Fulfillment
of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING

by

AYMAN MOHAMED FOUAD IBRAHIM

M.sc. in civil Engineering

THESIS APPROVAL

EXAMINERS COMMITTEE

Prof. Dr. Mohamed EL Hosseiny EL Nadi

Professor of Sanitary and Environmental Engineering Ain Shams university, Cairo, Egypt

Prof. Dr. Mohamed Ismail Sadawy

Prof. of Sanitary and Environmental Engineering Cairo university, Giza, Egypt

Prof. Dr. Ezat Abdel Shafi

Prof. of Sanitary and Environmental Engineering Cairo university, Giza, Egypt SIGNATURE

MT. SA

PUBLIC WORK DEPARTMENT
FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT January 2007 الدا مجدى صلاح نور الدين رئيس مجلس المسيم

DEDICATION

This work took a period of my life. I wish to dedicate it to who suffered to educate me, prepare and build my capacity and helped me to be as I am,

TO MY FATHER

I wish to dedicate it also to the person who strive to make my life comfortable and share in carrying the responsibility to help me

TO MY MOTHER

Last but not the least, I wish to dedicate this work

TO MY WIFE & CHILDREN

to be a guide in our life together in future.

ACKNOWLEDGMENT

The candidate is deeply grateful to **Prof. Dr** .**Ezat Abdel Shafy**, Professor of Sanitary Engineering, Faculty of Engineering, Cairo University, for his guidance, help in model preparation and sponsoring this work.

The author deeply wishes to express his gratitude to **Dr. Ehab M. Rashed**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Cairo University, for patient guidance, helpful suggestions, great support, cooperation and help in thesis and laboratory work.

The author wishes to give his sincere thanks to E. Said Abo Elalaa Head of El Berkah wastewater treatment plant, and the staff of El Berka wastewater treatment plant specially Chemist Shafikah, also technician Ashraf and Ibrahim fahmy for providing facilities, and cooperation during the preparation of this study

The author deeply thanks Prof. Dr. Aly Ahmed Abdel salam, for his support and encouragement.

Also, sincere thanks to the staff and personnel of Sanitary Engineering Section, Faculty of Engineering, Cairo University, for providing facilities, encouragement and cooperation during the preparation of this study

ABSTRACT

With the increasing concerns of environmental pollution control, level of wastewater treatment has been established for plant discharging to surrounding environment. Higher level of treatment generally means greater mass and volume of solids to be managed. Managing environmental pollution is on of the most problems which face the world today. So practice and procedures are being under deep investigation. Sludge treatment and management is a field of interest due to its adversely effect on environmental surrounding parameters. This study concerns with improving anaerobic sludge digester by co-digesting sewage sludge and agriculture residues. A bench and pilot scale were installed in El Berka wastewater treatment plant in El Sallam district, Cairo, Egypt. A bench scale was monitored over 70 days of operation to choose the most suitable agriculture residues could be mixed with sludge. The experimented sludge were primary sludge (PS), secondary sludge (SS), and thickened sludge, the agriculture residues were rice straw, maize stalk, grass clipping, and sugar cane refuse mixed with sludge with rates 1:20 and (residue : sludge). The characteristics of digested sludge such as 1:10 Temperature, pH, COD, TS, VSS, total alkalinity, and CBOD/NBOD ratio were monitored and evaluated. The results have showed that improving in COD destruction, VSS destruction, and total alkalinity were achieved. The most suitable residue was rice straw. Different rates 2%, 4%, 8%, 12% and 16% (of rice straw to sewage sludge) were applied in a bench scale and concluded that the 16% mixing rate was the most suitable ratio based on COD and VSS destruction percentage. Two pilots scale digester work in parallel, one for sewage sludge and the other for sludge mixed with rice straw. The rice straw was applied with rates of 5 %, 10%,16% and 20% to sewage sludge. The pilots unit were monitored over 386 days of continuous operation. The pilot unit was 2m3 tank reactor with net effective volume of 1.5 m³. The reactors were fed daily and operated under routine operating condition such as sun light, and sludge characteristics changes. The characteristics of digested sludge such as temperature, pH, COD, TS, VSS total

alkalinity, bacterial count, total coli-form, fecal coli-form, and shegella were monitored and evaluated.

The results have showed that a reduction of COD, and VSS up to 94, and 97.7% respectively were achieved. Improving in effluent COD and VSS (compared with digesting sludge without mixing) were 65% and 71.5% and increasing in bio-gas production from 30 % to 117 % was achieved. Mathematical representation for results are introduced.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	V
ABSTRACT	VI
TABLE OF CONTENTS	VIII
LIST OF TABLES	XIV
LIST OF FIGURES	XVII
LIST OF ABBREVIATIONS	XIX
CHAPTER (1) INTRODUCTION	D. N.
1-1GENERAL	Page No 1
1-2 STUDY OBJECTIVES	
1-3 STUDY SCHEME	
1-4 THESIS CONTENTS	
CHAPTER (2) REVIEW OF LITERATURE	
2-1 GENERAL	4
2-2CHARACTERISTICS OF SEWAGE SLUDGE	
2-2-1 Solids Concentration	
2-2-2 Particle Size	5.
2-2-3 Distribution Of Water	6
2-2-4 Flow Properties	7
2-2-5 Rheological Properties	7
2-2-6 Dewatering Properties	
2-2-7 Pathogens	8

2-	3 SOURCES OF SLUDGE	9
	2-3-1 Sludge Material Obtained By Screening	10
	2-3-2 Sludge Material Obtained By Grit Settling	10
	2-3-3 Primary Sludge	10
	2-3-4 Biological Sludge	11
	2-3-4-1 Aerobically Digested Sludge	12
	2-3-4-2 Trickling Filter Humus	12
	2-3-4-3 Waste Activated Sludge	14
	2-3-4-4 Sludge From Rotating Biological Reactor	17
	2-3-4-5 Coupled Attached- Suspended Growth Sludge	17
	2-3-4-6 Anaerobic Digested Sludge	18
	2-3-4-7 De-nitrification	18
	2-3-5 Chemical Sludge	21
2	2-4 SLUDGE PROCESSING	23
	2-4-1 Preliminary Operation	23
	2-4-1-1 Sludge Grinding	23
	2-4-1-2 Sludge De-gritting	23
	2-4-1-3 Sludge Blending	24
	2-4-1-4 Sludge Storage	24
	2-4-2- Sludge Thickening	25
	2-4-3 Sludge Stabilizations	26
	2-4-3-1 Anaerobic Digestion	27
	2-4-3-2 Aerobic Digestion	28
	2-4-3-3 Stabilization With Slaked Lime (Ca(OH)2)	28
	2-4-3-4 Stabilization With Quick Lime	29
	2-4-3-5 Drying	29
	2-4-3-6 Incineration	29
	2-4-3-7 Composting	30
	2-4-3-8 Disinfecting By Energy Radiation	30

2-4-4 Conditioning	30
2-4-5 Disinfecting	31
2-4-6 Dewatering	31
2-4-7 Sludge Disposal	32
2-4-7-1 Land Filling	32
2-4-7-2 Land Spreading On Agriculture Land	33
2-4-7-3 Land Spreading On Reclaimed Land	33
2-4-7-4 Land Farming	33
2-4-7-5 Ocean Disposal	33
2-4-7-6 Deep Well Injection	33
2-4-7-7 Contract Disposal	33
2-5 ANAEROBIC DIGESTION	34
2-5-1 Microbiology Process	34
2-5-2 Biochemistry Process	37
2-5-3 Kinetics In Anaerobic Treatment	42
2-6 PROCESS VARIATIONS	47
2-6-1 Low rate Digestion	47
2-6-2 High – Rate Digestion	47
2-6-3 Anaerobic Contact Process	48
2-6-4 Phase Separation	49
2-7 FACTORS EFFECT ON DIGESTION EFFICIENCY	50
2-7-1 Digester pH	50
2-7-2 The influence Of C/N Ration Digesters	53
2-7-3 Residence Time And Temperature	54
2-7-4 Nutrient Effects	56
2-7-5 Organic Loading	56
2-7-6 Toxicity	57
2-7-6-1 Volatile Acids	58
2-7-6-2 Heavy Metals	59
2-7-6-3 Light Metal Cations.	61