

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

BIN. C.

PRELIMINARY MODELS FOR CONSTRUCTION BIDS EVALUATION IN EGYPT

By

HOSSAM ABOLMAGD SADIK EL-KASHIF

Post Graduate diploma in Engineering Management (1994)

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTER OF SCIENCE
in

CIVIL ENGINEERING (Structures)

SUPERVISED BY

PROF. MOHEEB EL-SAID

Prof. of Construction Engineering and Management, Faculty of Eng., Cairo University. DR. OSMAN M. RAMADAN

Associate Prof., Struc. Eng. Dept., Faculty of Eng., Cairo University.

DR. OSSAMA A. HOSNY

Assistant Prof., Civil Eng. Dept., Faculty of Eng. at El-Mataria, Helwan University.

CHOSNY

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT February 2000

PRELIMINARY MODELS FOR CONSTRUCTION BIDS EVALUATION IN EGYPT

By

HOSSAM ABOLMAGD SADIK EL-KASHIF

Post Graduate diploma in Engineering Management (1994)

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING (Structures)

Approved by the Examining Committee:

Prof. Moheeb El-Said

Prof. of Construction Engineering and Management,

Thesis main advisor

Prof. Abdel-Hady Husien Hosny

Emeritus Prof., Structural Eng. Dept.,

Faculty of Engineering, Ain Shams University

Prof. Refaat Hassan Abdel-Razek

Prof. of Construction Management, Construction Engineering Dept.,

Faculty of Engineering, Zagazig University

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT

February 2000

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
ACKNOWLEDGEMENT
DEDICATION
ABSTRACT

CH	APTER ONE : INTRODUCTION	1 - 3
1.1	General	1
1.2	Problem Definition	1
1.3	Scope of Work	1
1.4	Research Objectives	2
1.5	Research Domain	2
1.6	Research Methodology	. 2
1.7	Thesis Organization	3
CH	APTER TWO: TRADITIONAL BID EVALUATION SYSTEMS	5 - 15
2.1	Introduction	5
2.2	Bidding Systems in Egypt	7
2.3	Advantages of Competitive Bidding	8
2.4	Pre-Bid Considerations	9
2.5	Bid Analysis and Contract Award	11
CH	APTER THREE : RECENT DEVELOPMENTS IN	
	BID EVALUATION SYSTEMS	17 - 34
3,1	Introduction	17
3.2	Criteria Used for Bids Evaluation and Contractor Prequalification	17
3.3	Current Evaluation Criteria	20
3.4	Decision Models for Contractors Evaluation	26
3.5	Bid Evaluation Researches	30
3.6	Application of ANN in Construction Management	32
3.7	Application of Multi-Parameter Decision-Making	
	in Construction Management	34

CH	APTER FOUR : ARTIFICIAL INTELLIGENCE AND	
	NEURAL NETWORKS	35 - 48
4.1	Introduction	35
4.2	Expert Systems and Neural Networks	36
4.3	Features of Neural Networks	37
4.4	Components of Neural Networks	38
4.5	How Does the ANN Work?	38
4.6	Characteristics of Neural Networks	40
4.7	Classification of Neural Networks	41
4.8	Phases of ANNs' Applications Development	43
4.9	ANN Learning and Configuration	45
4.10	Characteristics of the Environments Suitable for ANN Application	46
CHA	APTER FIVE : DEVELOPING THE ANN MODEL	49 - 73
5.1	Introduction	49
5.2	Data Collection	49
5.3	Proposed Evaluation Model	64
5.4	Neural Network Development	66
5.5	Study Implementation	66
5.6	Example	70
Chaj	pter Six : BID EVALUATION AS A MULTI-ATTRIBUTE	
	DECISION-MAKING PROBLEM	75 - 94
6.1	Introduction	75
6.2	Approaches of Multi-Attribute Decision Making	76
6.3	Summary of the Multi-Attribute Utility Theory	77
6.4	Multi-Objective Utility Theory Evaluation	79
6.5	Methodology	79
6.6	Model Development	83
6.7	Example	89
6.8	Integration of the MADM and the ANN Models	91
Chap	oter Seven : SUMMARY AND CONCLUSIONS	95 - 101
7.1	Summary '	05

Thesis Indices	Table of Conten
7.2 Conclusions	98
7.3 Recommendations	100
REFERENCES	103
Appendix A: Evaluation of Contractors' Performance in Past Projects	109
Appendix B: ANN Training and Testing Groups	115
	A

ARABIC ABSTRACT

List of Tables

Table 3.1: Main Criteria and Sub Criteria for Contractor Prequalification	
and Bid Evaluation	19
Table 3.2: Measures of Contractor Prequalification Criteria	22
Table 3.3: Hybrid Contractor Prequalification Decision Model	
Configuration	30
Table 3.4: Standardized Threshold Limits within N(0,1) Distribution	32
Table 4.1: Potential Applications of ANN Paradigms in Construction	
Engineering and Management	47
Table 5.1: The Questionnaire Form	51
Table 5.2: Categories of the Participating Experts	52
Table 5.3: Final Results of the Questionnaire	54
Table 5.4: Feeded Network Input and Output Data	59
Table 5.5: Correlation Coefficients between Major Evaluation Categories	
and Cost, Time and Quality Slippage	64
Table 5.6: Proposed Evaluation Form	65
Table 5.7: Data of the Submitted Bids - Example	70
Table 5.8: Present Value calculations - Example	71
Table 5.9: Evaluation of Bidders' Criteria - Example	72
Table 5.10: ANN Input Data - Example	71
Table 5.11: ANN Output - Example	72
Table 5.12: Ranges of Expected Cost, Duration, and Quality - Example	72
Table 6.1: Major MADM Models and their Limitations	76
Table 6.2 : Scale, Range, Threshold and Most Preferred Points	84
Table 6.3 : Straight Line Utility Values	85
Table 6.4: Common Scale Utility	86
Table 6.5: Proposed Evaluation Form	87
Table 6.6: Technical Evaluation Results - Example	92
Table 6.7: Calculation of Bids Effective Costs	91
Table 6.8: Integration of the MADM and ANN Models	94
Table 6.0 : Panges of Expected Cost Duration and Quality	94

List of Figures

Fig. 3.1: Hierarchical Process for Developing Design Support	
Systems for Contractor Evaluation Analysis	29
Fig. 4.1: Example of Simple 2-Layer Neural Network	39
Fig. 4.2 : Classification of ANN	42
Fig. 4.3: Phases of ANN Applications Development	44
Fig. 5-1: Skeleton of the Evaluation Criteria	57
Fig. 5-2: Relationship and Correlation between Experience and	
Slippage in Cost, Time and Quality	60
Fig. 5-3: Relationship and Correlation between Equipment and	
plant and Slippage in Cost, Time and Quality	60
Fig. 5-4: Relationship and Correlation between Personnel and	
Slippage in Cost, Time and Quality	61
Fig. 5-5: Relationship and Correlation between Sub Contractors	
and Slippage in Cost, Time and Quality	61
Fig. 5-6: Relationship and Correlation between Technical	
Programs and Slippage in Cost, Time and Quality	62
Fig. 5-7: Relationship and Correlation between Site Management	
and Slippage in Cost, Time and Quality	62
Fig. 5-8: Relationship and Correlation between Quality	
Management and Slippage in Cost, Time and Quality	63
Fig. 5-9: Relationship and Correlation between Bid Cost and	
Slippage in Cost, Time and Quality	63
Fig. 5-10: Network Architecture	68
Fig. 6-1: Basic Utility	78
Fig. 6-2: Characteristic Utility Function	78
Fig. 6-3: Value Heirarchy of Evaluation Criteria	80
Fig. 6-4: Flowchart of Utility Theory Model	82
Fig. 6-5: Financial Evaluation Concept	89
Fig. 6-6: Flowchart of the Bid Evaluation Utility Model	90
Fig. 6-7: Integrated Model Flowchart	93

LIST OF ABBREVIATIONS

A.I. Artificial Intelligence

ANN Artificial Neural Network

B.O.Q. Bill Of Quantity

BRE The Building Research Establishment

C_{eff} Effective Cost

EC Expected Cost

EMR Experience Modification Rating

EU Expected Utility

FIDIC the Federation Internationale des Ingenieurs conseils

FP Fair Price

IFB Invitation For Bidding

L.E. Egyptian Pound

LR Learning Rate

MADM Multi-Attribute Decision-Making

OSHA Occupational Safety and Health Administration

PV Present Value

RFP Request For Proposal

u(x) Utility of Satisfaction in Objective (x)

UK United Kingdom

USAID United States Agency for International Development

WB The World Bank

ACKNOWLEDGEMENT

First I would like to express my deep gratitude to Prof. Moheeb El-Said for his kind help, and generous support.

No thanking words can express my appreciation and deep gratitude to Dr. Osman Ramadan for his conspicuous guidance, continual support and outstanding constructive encouragement.

Grateful thanks and deep gratitude to Dr. Ossama Hosny for his kind help, guidance, encouragement and generous support.

Also, I would like to express my grateful thanks and appreciation to Prof. Dr. Amr Sharaf, the American University in Cairo and Eng. Alaa-Eddeen Labeeb, Arab Contractors Co. for their encouragement and supreme assistance. I am also thankful to all my teachers and colleagues for their help and sincere support in the different stages of my educational life.

I would like also to express my deepest appreciation to my uncle, Prof. Mohammed Sadik El-Kashif for his sincere encouragement and kind support all over my life.

Finally, I would like to express my deepest thanks and appreciation to my parents, my wife Shaymaa and my kids Maha, Nada and Mohammed for their love, patience, encouragement and support.

Hossam Abolmagd S. El-Kashif

To the Soul of my beloved father

To my kind mother

To my beloved wife Shaymaa

To my pulsating heart Maha, Nada and Mohammed