

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Optimizing the production of metakaolin based geopolymer concrete under ambient temperature

By

Ahmed Abdelaleim Abdelaleim Elhadidy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Optimizing the production of metakaolin based geopolymer concrete under ambient temperature

By **Ahmed Abdelaleim Abdelaleim Elhadidy**

A Thesis Submitted to the
Faculty of Engineering at Cairo University in
Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of

Ass. Prof. Dr. Mohamed I. Serag

Dr. Muhammad S. El-Feky

Ass. Professor of Strength of Materials Civil Engineering Department Faculty of Engineering, Cairo University Researcher Civil Engineering Department National Research Centre

Optimizing the production of metakaolin based geopolymer concrete under ambient temperature

By **Ahmed Abdelaleim Abdelaleim Elhadidy**

A Thesis Submitted to the
Faculty of Engineering at Cairo University in
Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Ass. Prof. Dr. Mohamed Ismail Abdul Aziz Serag (Thesis Main Advisor)

Assistant Professor of Strength of Materials - Faculty of Engineering - Cairo University

Dr. Muhammad Samy Abdul Hakeem El-Feky (Advisor)

Researcher in Civil Engineering Department - National Research Centre

Prof. Dr. Osama Abdelghfour Ahmed Hodhod (Internal Examiner)

Professor of Properties Strength of Materials - Faculty of Engineering - Cairo University

Prof. Dr. Sayed Mohamed Ahmed Abdelbaky (External Examiner)

Professor in Civil Engineering Department - National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

Engineer's Name: Ahmed Abdelaleim Abdelaleim Elhadidy

Date of Birth: 03/09/1992 **Nationality:** Egyptian

E-mail: <u>ahmedelhadidy5000@yahoo.com</u> **Phone:** 01000432884 - 01000413605

Address: No. 26, Sayed tolba St., Al_Haram St, Giza, Egypt.

Registration Date:03/06/2016Awarding Date:..../..../ 2020Degree:Master of ScienceDepartment:Structural Engineering

Supervisors: Ass. Prof. Dr. Mohamed I. Serag

Dr. Muhammad S. El-Feky

Examiners: Prof. Dr. Sayed Mohamed Ahmed Abdelbaky (External examiner)

Professor in Civil Engineering Department – National Research Center Prof. Dr. Osama Abdelghfour Ahmed Hodhod (Internal examiner) Ass. Prof. Dr. Mohamed Ismail Abdul Aziz Serag (Thesis main advisor)

Dr. Muhammad Samy Abdul Hakeem El-Feky (Advisor)

Title of Thesis:

Optimizing the production of metakaolin based geopolymer concrete under ambient temperature

Key Words:

Geopolymer; Kaolin; Metakaolin; Ambient temperature; alkali activated cement

Summary:

This research thesis studies the effect of using different heating temperatures as a thermal treatment of kaolin on the reactivity of treated particles in producing alkali activated cement. The effect of different activator modulus was also studied as well as the percentage of Na₂O of binder weight and different water to binder ratio.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Abdelaleim Abdelaleim Elhadidy Date: ./ ../ 2020

Signature:

Dedication

To My Dad, Mum &My Uncle, My Family,

My leaders that has a great effect on my life,

All my love to you.

Acknowledgments

IN THE NAME OF ALLAH, THE MOST GRACIOUS AND THE MOST MERCIFUL

First and above all, I have to thank **Allah** for giving me wisdom and knowledge I have today. I praise **Allah** for His care and support and providing me with the opportunity to present my hard work in a beneficial knowledge to people.

I would like to deeply thank my admired supervisor Dr. **Mohamed I. Serag**; who offered me the opportunity to be under his supervision. I thank him for his encouragement and his flexible treatment during the course of my thesis. I also thank him for caring, patience, and his great effort to make my thesis appear in its current form.

I would like to gratefully thank my respectful supervisor **Dr. Muhammad S. El-Feky** for his mentorship, information, patience, and powerful support in my thesis. In addition to the above, I appreciate his treatment as a helpful brother to me. I thank him for benefiting me culturally, socially, ethically and religiously.

Finally, I would like to thank the **National Research Center**, not only for providing the funding which allowed me to undertake this research, but also for providing me with the facilities and workman power to implement the research experimental plan.

Table of Contents

Disclaimer	i
Dedication	ii
Acknowledgments	iii
Table of Contents	iv
List of Tables	vii
List of Figures	viii
Abstract	xiv
CHAPTER ONE: INTRODUCTION	1
1.1 General	1
1.2. Objectives	3
1.3. Scope of work	3
1.4. Thesis layout	4
1.4.1. Chapter 1: Introduction	4
1.4.2. Chapter 2: Literature Review	4
1.4.3. Chapter 3: Experimental Program	4
1.4.4. Chapter 4: Results and Discussion	4
1.4.5. Chapter 5: Summary, Conclusion and Recommendations	4
CHAPTER TWO: BACKGROUND & LITERATURE REVIEW	5
2.1. Background	5
2.1.1. General	5
2.1.2. Geopolymers	7
2.1.2.1. Geopolymerization process	9
2.1.2.2. Effect of constituents	
2.1.3. Geopolymer based on Metakaolin (MK)	10
2.1.3.1. Environmental impact for Metakaolin based geopolymer	
2.2. Literature review	12
2.2.1. MK geopolymerization process	
2.2.2. Metakaolin properties and its effect on geopolymerization	
2.2.2.1. Effect of mineral composition	
2.2.2.2. Effect of thermal treatment for kaolin	
2.2.2.3. Effect of specific surface area	
2.2.3. Effect of alkaline activator on geopolymerization process	16

2.2.4. Effect of curing on geopolymerization process	18
2.2.5. Applications of geopolymers based on metakaolin	20
2.2.5.1. Anticorrosive products	20
2.2.5.2. Thermal resistant products	23
2.2.3. Comparison between AAC and traditional cementitious mortars	25
2.2.3.1. Materials used in the experimental program	25
2.2.3.2. Mortar mixes	26
2.2.3.3. Results and discussion	28
CHAPTER THREE: EXPERIMENTAL PROGRAM	30
3.1. General	30
3.2. Experimental program	30
3.2.1. Overview of Experimental Program	30
3.2.2. Characterization of Used Materials	31
3.2.2.1. Kaolin	31
3.2.2.2. Fine aggregates	33
3.2.2.3. Coarse aggregates	34
3.2.2.4. Mixed aggregates	35
3.2.2.5. Water	36
3.2.2.6. Sodium Hydroxide (NaOH)	36
3.2.2.7. Sodium Silicate (Na ₂ SiO ₃)	36
3.2.3. Samples Preparation	37
3.2.3.1. Mixing	37
3.2.3.2. Curing	42
3.2.4. Testing	43
3.2.4.1. Fresh Concrete Tests	43
3.2.4.2. Hardened Concrete Tests	44
3.2.4.2. A. Compressive Strength Test	44
3.2.4.2. B. Tensile Strength Test	45
3.2.5. Characterization	46
3.2.5.1. Scanning Electron Microscope (SEM)	46
3.2.5.2. X-ray diffraction XR, thermo-gravimetric analyses TGA and differenti scanning calorimetry (DSC)	
CHAPTER FOUR: RESULTS AND DISCUSSION	49
4.1. Introduction	49
4.2. The effect of using different heating temperatures as a thermal treatment of	
4.2.1. Analysis of compressive strength results of MK based geopolymer	

4.3. The effect of various factors on producing MK based geopolymer concrete.	53
4.3.1. Compressive strength results of MK based geopolymer concrete.	53
4.3.1.1. The effect of activator modulus (Ms) and water to binder ratio (w/b) with consta Na ₂ O percentage on the compressive strength	
4.3.1.2. The effect of Na ₂ O percentage and water to binder ratio (w/b) with constant activator modulus ratio (Ms) on the compressive strength.	66
4.3.2. Tensile strength results of MK based geopolymer concrete.	82
4.3.1.1. The effect of activator modulus (Ms) and water to binder ratio (w/b) with consta Na ₂ O percentage on the Tensile strength.	
4.3.1.2. The effect of Na ₂ O percentage and water to binder ratio (w/b) with constant activator modulus ratio (Ms) on the tensile strength.	89
4.3.3. Fresh properties of MK based geopolymer mortar (Flowability).	98
4.3.3.1. The effect of activator modulus (Ms) and water to binder ratio (w/b) with consta Na ₂ O percentage on the flowability.	
4.3.3.2. The effect of Na ₂ O percentage and water to binder ratio (w/b) with constant activator modulus (Ms) on the flowability.	. 104
CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS	,111
5.1. Summary	.111
5.2. Conclusion	.112
5.2.1. The effect of using different heating temperatures as a thermal treatment of kaolir	
5.2.1.1. Compressive Strength	. 112
5.2.2. The effect of various factors on producing MK based geopolymer concrete	. 112
5.2.2.1. Compressive Strength	. 112
5.2.2.2. Tensile Strength.	. 116
5.2.2.3. Fresh properties of MK based geopolymer mortar (Flowability)	. 118
5.3. Recommendations	.119
References	120

List of Tables

Table 2.1:shows the chemical compsition of the cementitious materials used	25
Table 2.2: mixing proportions of cementitious mortars.	26
Table 2.3: mixing proportions of Fly ash mortars.	26
Table 2.4: mixing proportions of Metakaolin mortars	27
Table 3.1: Metakaolin (wt. %) Chemical composition	31
Table 3.2: Chemical composition of sodium hydroxide	36
Table 3.3: chemical composition on sodium silicate	37
Table 3.5: Mixtures constituents (kg) per 1 m3	37
Table 3.6: The calculations of mix proportions	40
Table 3.7: Mixtures components (kg) per 1 m3 for w/b=0.35	41
Table 3.8: Mixtures components (kg) per 1 m3 for w/b=0.5	41
Table 3.9: QUANTA FEG 250 properties and specifications	46
Table 4.1: Shows percentages of mixing materials, heating temperatures for 2 hrs. and compressive strength results.	50
Table 4.2: Shows the results of the compressive strength test	53
Table 4.3: Shows the results of the tensile strength test.	82
Table 4.4: Shows the results of the flowability test.	98

List of Figures

Figure 2.1: the estimation of the amount of the world cement production5
Figure 2.2: Alkaline cement classification
Figure 2.3: cementitious alkali-activated system components
Fig 2.3: Schematic representation of the alkali activation reaction process
Figure 2.4: A schematic model of the geopolymerization process
Figure 2.5: clay particles: (A) first type of kaolin with typical structure (B) second type containing tubular halloysite
Figure 2.6: this image shows the effect of two different types of activator on the reaction activity of MK
Figure 2.7: crystalline phases formed in MK activated with 10 M NaOH solution at 40°C
Figure 2.8: show the peaks I, II and III
Figure 2.9: using of MK based geopolymer as anticorrosive coating for marine concrete .22
Figure 2.10: porous geopolymer24
Fig 2.11: The compressive strengths of AAC and OPC of three strength classes28
Figure 3.1: Kaolin
Figure 3.2: Fine aggregates sieve analysis in comparison with the limits of the Egyptian code of practice
Figure 3.3: Dolomite aggregates sieve analysis in comparison with the limits of the Egyptian code of practice
Figure 3.4: Mixed aggregates sieve analysis is in comparison with the limits of the Egyptian code of practice
Figure 3.7: Concrete curing
Fig 3.9: Flow Table
Figure 3.10: Universal testing machine SHIMADZU 1000KN
Fig 3.11: Tensile strength test
Fig 3.12: QUANTA FEG 250 scanning electron microscope used for analysis47
Fig 4.1: Effect of temperature variations on 7_day compressive strength51
Fig 4.2: Effect of temperature variations on 28_day compressive strength51
Fig 4.3: Effect of temperature variations on 7_day and 28_day compressive strength52
Fig 4.4: Effect of Ms on the 7-day compressive strength with constant (Na ₂ O%=8) and w/b (0.35)55