

hossam maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Color :000

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

-C-102-

THE EFFECT OF USING NANO TITANIUM AS A PARTIAL REPLACEMENT OF CEMENT ON THE MECHANICAL PROPERTIES AND PHOTOCATALYTIC PROPERTIES OF MORTAR

By

Rania Adel Ali Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

THE EFFECT OF USING NANO TITANIUM AS A PARTIAL REPLACEMENT OF CEMENT ON THE MECHANICAL PROPERTIES AND PHOTOCATALYTIC PROPERTIES OF MORTAR

By

Rania Adel Ali Khalil

A Thesis Submitted to the
Faculty of Engineering at Cairo University in
Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Under the Supervision of

Prof. Dr. Ahmed Mahmoud Maher Ragab

Professor Emeritus of Properties and
Strength of Materials
Structural Engineering Department
Faculty of Engineering, Cairo University
Giza, Egypt

Prof. Dr. Hala Mohamed Gamal El-Din El-Kady

Professor / Head of Structural Engineering, Civil Engineering Department, National Research Centre, Giza, Egypt

Prof. Dr. Mohamed Ismail Abdel Aziz Serag

Professor Emeritus of Properties and Strength of Materials, Structural Engineering Department, Faculty of Engineering, Cairo University Giza, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

THE EFFECT OF USING NANO TITANIUM AS A PARTIAL REPLACEMENT OF CEMENT ON THE MECHANICAL PROPERTIES AND PHOTOCATALYTIC PROPERTIES OF MORTAR

By

Rania Adel Ali Khalil

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Structural Engineering

Approved by the Examining Committee

Prof. Dr. Ahmed Mahmoud Maher Ragab (Thesis Main Advisor) Professor Emeritus of Properties and Strength of Materials - Structural Engineering Department – Faculty of Engineering – Cairo University.

(Internal Examiner) M. C. Atta Prof. Dr. Mohamed Mohsen El-Attar Professor of Properties and Strength of Materials – Structural Engineering Department – Faculty of Engineering – Cairo University.

Prof. Dr. Mohamed Ahmed khafaga

(External Examiner)

Professor of Properties and Strength of Materials - Housing And Building

National Research Centre.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

Engineer

Rania Adel Ali Khalil

Date of Birth:

27/01/1991

Nationality:

Egyptian

E-mail:

Rania.a.kh@gmail.com

Phone:

002-0100-288-7309

Address:

8th district - Nasr city - Cairo - Egypt.

Registration Date: Awarding Date:

01/03/2014

Degree:

Department:

Structural Engineering

Supervisors:

Prof. Dr. Ahmed Mahmoud Maher Ragab Prof. Dr. Mohamed Ismail Abdel Aziz Serag Prof. Dr. Hala Mohamed Gamal El-Din El-Kady

Examiners:

Prof. Dr. Ahmed Mahmoud Maher Ragab (Thesis Main Advisor)
Professor Emeritus of Properties and Strength of Materials – Structural
Engineering Department – Faculty of Engineering – Cairo University.

Prof. Dr. Mohamed Mohsen El-Attar

(Internal Examiner)

Professor of Properties and Strength of Materials – Structural Engineering

Department – Faculty of Engineering – Cairo University.

Prof. Dr. Mohamed Ahmed khafaga

(External Examiner)

Professor of Properties and Strength of Materials - Housing And Building

National Research Centre.

Title of Thesis:

The Effect of Using Nano Titanium as a Partial Replacement of Cement on the Mechanical Properties and Photocatalytic Properties of Mortar

Key Words:

Nano material, Nano Titanium, agglomeration, dispersion, photocatalytic.

Summary:

This research aims to study the effect of adding Nano titanium (TiO₂) on the mechanical properties and photocatalytic properties of cement mortar. To achieve these goals, three different percentages of Nano TiO₂ were investigated 2%, 3%, and 4% by Wt. of cement. Compressive strength, Flexural strength, and Splitting strength were measured. Different method of dispersing Nano TiO₂ were investigated to reach the optimum utilization of Nano materials. In addition, the effect of adding Nano TiO₂ on the photocatalytic properties of cement mortar was investigated. The study showed that Nano TiO₂ has a significant effect on the photocatalytic process, which gives the mortar new properties in the process of self-cleaning.

MARA AR

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Rania Adel Ali Khalil	Date:	/	/ 2022
Signature:			

ACKNOWLEDGMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS AND THE MOST MERCIFUL

First and above all, I have to thank Allah for giving me wisdom and knowledge I have today. I praise Allah for His care and support and providing me with the opportunity to present my hard work in a beneficial knowledge to people.

I would like to thank my admired supervisor Dr. Ahmed M. Ragab; who offered me the opportunity to be under his supervision. I thank him for his encouragement and his flexible treatment during the course of my thesis. I also thank him for caring, patience, and his great effort to make my thesis appear in its current form.

I would like to deeply thank my admired supervisor Dr. Mohamed I. Serag; who offered me the opportunity to be under his supervision. I thank him for his encouragement and his flexible treatment during the course of my thesis. I also thank him for caring, patience, and his great effort to make my thesis appear in its current form.

I would like to gratefully thank my respectful supervisor Dr. Hala El-Kady for her mentorship, information, patience, and powerful support in my thesis. In addition to the above, I appreciate her treatment as a helpful brother to me. I thank him for benefiting me culturally, socially, ethically and religiously.

Finally, I would like to thank the National Research Center, not only for providing the funding which allowed me to undertake this research, but also for providing me with the facilities and workman power to implement the research experimental plan.

DEDICATION

To My Mum, My Dad & My Husband, My family

that has a great effect on my life.

All my love to you for your care and support.

TABLE OF CONTENTS

Acknowledgments	II
Dedication	III
Table of Contents	IV
List of Tables	VI
List of Figures	VII
ABSTRACT	IX
CHAPTER ONE: INTRODUCTION	1
1.1. General	1
1.2. Objectives	3
1.3. Scope of Work	3
1.4. Thesis Layout	4
CHAPTER TWO: Literature Review	5
2.1. Introduction	5
2.2. General Review about Nanotechnology	6
2.3. Technical background on nanoparticles application in concrete	7
2.4. The effect of using Nano-titanium in concrete mortar on the Concrete mechanical and durability	9
2.5. Factors Affecting Nanomaterial Behavior as Cement Substitution	10
2.6. Mixing and dispersion methods	13
2.7. THE EFFECT OF USING NANO TIO2 ON THE PROPERTIES OF CONCRETE	14
2.8. Self-Cleaning concrete	17
CHAPTER THREE: Experimental program	
3.1. General	19
3.2. Overview of Experimental Program	19
3.3. Characterization of Used Material	22
3.2.1. Cement	22
3.2.2. Fine aggregate	22
3.2.3. Nano Titanium	23
3.2.4. Water	24
3.2.5. Super plasticizer	24

3.4. Mixtures Preparation	25
3.3.1. Dispersion devices	26
3.3.2. Curing	31
3.5. Testing	32
3.5.1. Hardened concrete test	32
3.5.2. Durability test	36
CHAPTER FOUR: Results and Discussion	41
4.1. Introduction	41
4.2. Microstructure Properties of Nano titanium Concrete	41
4.3. Mechanical Properties of Nano TiO2 Concrete	42
4.3.1. Compressive Strength of Nano TiO2 Concrete	42
4.3.2. Flexural Strength of Nano TiO2 Concrete	46
4.3.3. Splitting Tensile Strength of Nano TiO2 Concret	e 47
4.4. The effect of different dispersion Techniques for Nano TiO2 mortar:	
4.5. Comparison between Mechanical properties of mortar us starting and optimum dispersing technique:	_
4.5.1. Compressive Strength	49
4.5.2. Flexural Strength 28 days	51
4.5.3. Splitting Tensile Strength 28 days	52
4.6. Durability test	53
4.6.1. Self-Cleaning test	53
CHAPTER FIVE: Conclusion and Recommendations	58
4.7. Conclusion	58
4.8. RECOMMENDATIONS	58
DECEDENCE	50

LIST OF TABLES

Table 3-1: Chemical Composition of Portland Cement (wt%)	22
Table 3-2 Properties of TiO2 nanoparticles	23
Table 3-3 Polycarboxylate admixture physical and chemical characteristics	24
Table 3-4 Specifications and properties of the sonication bath	26
Table 3-5 rotor-stator homogenizer properties	28

LIST OF FIGURES

Figure 1-1: Photocatalytic effect of titanium dioxide on pavement	2
Figure 2-1"top-down" Illustration the and "bottom-up" approaches in nanotechnology [1]	6
Figure 2-2: Setting time of cement pastes	9
Figure 3-1 Experimental plan	21
Figure 3-2 Fine aggregates sieve analysis in comparison with the limits of the Egyptian code of practice	22
Figure 3-3 TEM images of TiO2 nanoparticles	23
Figure 3-4 XRD spectrum of TiO2 nanoparticles	
Figure 3-5 : Schematic representation of a multiphase suspension dispersed through different mechanisms exercised by super plasticizer	25
Figure 3-6 The Ultrasonic sonication bath device, LBS2 model	26
Figure 3-7: (rotor-stator) homogenizer	27
Figure 3-8 Homogenizer work with the sonication bath at the same time	28
Figure 3-9: Steel molds which their inner sides coated with oil	29
Figure 3-10 Beaker contained nano TiO2 colloidal	30
Figure 3-11 Digital weight calibrations with different tolerance	30
Figure 3-12 : The mixer	31
Figure 3-13: Water curing	31
Figure 3-14 Universal testing machine SHIMADZU 1000 kN	32
Figure 3-15 Compression strength test setup	33
Figure 3-16 : Flexural test setup	34
Figure 3-17 Splitting Tensile Strength test setup	35
Figure 3-18: The water can't Breakthrough concert because the Surface not cleaned	36
Figure 3-19: A thin layer of grease was applied on a Nano TiO2 concrete cubes surface	37
Figure 3-20 : A thin layer of car oil was applied on a Nano TiO2 concrete cubes surface	37
Figure 3-21: The concrete cubes were put in glass jars containing Nitrogen and closed tightly	37
Figure 3-22: The concrete cubes in glass jars were exposure to the sun rays during one month	38
Figure 3-23 Microscope fixed to be in a horizontal position	39

Figure 4-1: Agglomeration of Nano TiO2 and its filling effect in concrete	41
Figure 4-2 Rolling effect of Nano TiO2 in concrete	42
Figure 4-3 Relationship between the 7 days compressive strength and different percentages of Nano titanium cured in normal water	43
Figure 4-4 Relationship between the 28 days compressive strength and different percentage of Nano titanium cured in normal water	44
Figure 4-5: 90 days compressive strength using different percentages of Nano titanium cured in normal water	45
Figure 4-6: 28 days Flexural Strength using different percentages of Nano titanium cured in normal water	46
Figure 4-7: 28 days Splitting Tensile Strength using different percentages of Nano-titanium cured in normal water	47
Figure 4-8: 28 days compressive strength using different type of dispersion on Nano titanium cured in normal water	48
Figure 4-9 Relationship between Control Mix, method (I) and method (V) on compressive strength for 7 days	49
Figure 4-10 Relationship between Control Mix, method (I) and method (V) on compressive strength for 28 days	49
Figure 4-11 Relationship between Control Mix, method (I) and method (V) on compressive strength for 90 days	50
Figure 4-12: The effect of Nano TiO2 dispersing technique on the compressive strength of different ages	50
Figure 4-13: 28 days flexural strength using different type of dispersion on Nano titanium cured in normal water	51
Figure 4-14: 28 days splitting tensile strength using different type of dispersion on Nano titanium cured in normal water	52
Figure 4-15: Before applying any layer on the surface of Nano TiO2 Concrete cube	53
Figure 4-16 : After applying a thin layer of grease on the surface of Nano TiO2 Concrete cube	54
Figure 4-17 After applying a thin layer of grease on the surface of Nano TiO2 Concrete cube and expose the cube to the sun for month	54
Figure 4-18: After applying a thin layer of car oil on the surface of Nano TiO2 Concrete cube	55
Figure 4-19 After applying a thin layer of car oil on the surface of Nano TiO2 Concrete cube and expose the cube to the sun for month	55
Figure 4-20 : The final surface results are prove that the Nano-titanium has self-cleaning property	

ABSTRACT

This research aims to study the effect of adding Nano titanium (TiO2) on the mechanical properties and photocatalytic properties of cement mortar. To achieve these goals, three different percentages of Nano TiO2 were investigated 2%, 3%, and 4% by Wt. of cement. Compressive strength, Flexural strength, and Splitting strength were measured. Different method of dispersing Nano TiO2 were investigated to reach the optimum utilization of Nano materials.

In addition, the effect of adding Nano TiO2 on the photocatalytic properties of cement mortar was investigated. The study showed that Nano TiO2 has a significant effect on the photocatalytic process, which gives the mortar new properties in the process of self-cleaning.

Key Words:

Nano material, Nano Titanium, agglomeration, dispersion, photocatalytic.