

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Value of the Assessment of Interleukin 6 level in Allogenic T-cell Replete Haploidentical peripheral blood haematopioetic stem cell transplantation using post-transplant cyclophosphamide as a predictor for the occurrence of acute Graft versus Host Disease

Thesis

Submitted For Partial Fulfillment of Master Degree in Clinical Haematology

By

Essam Eldin Mohamed Mohamed Khater *M.B.B.ch.*

Under supervision of

Prof. Dr. Mohamed Osman Azzazi

Professor of Internal Medicine, Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Dr/ Rasha Magdy Mohamed

Assistant Professor of Internal Medicine, Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

Dr/ Aliaa Mohamed Saeed

Lecturer of Internal Medicine, Clinical Haematology and BMT Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Osman Azzazi,**Professor of Internal Medicine, Clinical Haematology and BMT,
Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr/ Rasha Magdy Mohamed**, Assistant Professor of Internal Medicine, Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr/ Aliaa Mohamed Saced,** Lecturer of Internal Medicine, Clinical Haematology and BMT, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Essam Eldin Mohamed

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
The Aim of the Study	3
Review of Literature	
Stem Cell Transplantation	4
Graft-Versus-Host Disease	30
Diagnostic Biomarkers of aGVHD	60
Patients and Methods	86
Results	100
Discussion	133
Summary and Conclusion	147
Recommendations	151
References	152
Arabic Summary	

List of Abbreviations

Abb. Full term
ADAM A disintegrin and metalloprotease aGVHD Acute graft-versus-host disease
AHSCTAllogeneic hematopoietic stem cell transplant
AMLAcute myeloid leukemia
ANCAbsolute neutrophil count ANG2Angiopoetin-2
APCsAntigen presenting cells
ATGAntithymocyte globulin
AUC
BM CTN The Blood and Marrow Transplant Clinical Trials Network
BM Bone marrow
BMBone marrow
BMTBone marrow transplantation
CBTCord blood transplantation
cGVHD Chronic GVHD
CIBMTR The Center for International Blood and Marrow Transplant Research
CML Chronic Myelogenous Leukemia
CMVCytomegalovirus
CNTF Ciliary neurotrophic factor
CsaCyclosporine
CXCR4 Chemokine receptor 4
DAMPs Danger associated molecular pattern molecules
DLI Donor lymphocyte infusion
DNA Deoxyribonucleic acid
DRI Disease risk index

List of Abbreviations Cont...

Abb.	Full term
	Double unit umbilical cord transplant
EBMT	The European Group for Blood and Marrow Transplantation
ECP	Extra corporal photo pheresis
ELISA	Enzyme-linked immunosorbent assay
FI	Full intensity
G-CSF	Granulocyte colony-stimulating factor
	Granulocyte-macrophage colony-stimulating factor
GVHD	Graft-versus-host disease
HCT	Hematopoietic cell transplant
HGF	Hepatocyte Growth Factor
HL	Hodgkin lymphoma
HLA	Human leukocyte antigen
HSCT	Hematopoietic stem cell transplant
HSV	Herpes simplex virus
	International Bone Marrow Transplantation Registry
IFN-γ	Interferon-gamma
IL-1	Interleukin-1
iNKT cells	Invariant natural killer T cells
INR	International normalized ratio
IPS	Idiopathic Pneumonia Syndrome
ISC	Immune stem cells
IV	Intravenously
JAKs	Janus kinases
	Lymph hematopoietic graft- <i>versus</i> -host reactions

List of Abbreviations Cont...

Abb.	Full term
LJF	Leukemia inhibitory factor
MA	•
	Myeloid derived suppressor cells
	Monocytic MDSCs
	Mycophenolate mofetil
NHL	Non-Hodgkin lymphoma
NIH	National Institutes of Health
NK	Natural killer cells
NO	Nitric oxide
NRM	Non-relapse mortality
OS	Overall survival
PAMPs	Pathogenic associated molecular pattern
	molecules
	Peripheral blood stem cell
PBSCTs	Peripheral blood stem cells transplant
	Polymerase Chain Reaction
PCV	Pneumococcal conjugate
PT	Prothrombin time
PT-Cy	Post-transplant cyclophosphamide
PTT	Partial Thromboplastin Time
REG3α	Regenerating islet-derived $3-\alpha$
RIC	Reduced intensity Condoning
SCID	Severe combined Immunodeficiency
SD	Sibling donors
SDF-1	Stromal cell-derived factor-1-alpha
sIL-2R	Soluble IL-2 receptor
sIL-7R	Soluble IL-7 receptor
SNPs	Single-nucleotide polymorphisms

List of Abbreviations Cont...

Abb.	Full term
SOS	Sinusoidal obstruction syndrome
ST2	
T reg	T regulatory cells
TAC	
TAM	Transplantation associated microangiopathy
TBI	Total body irradiation
TCZ	Tocilizumab
TMP-SMX	Trimethoprim-sulfamethoxazole
TNFR	Tumor necrotizing factor receptor
TNF-α	Tumor necrosis factor-alpha
TRM	Transplant-related mortality
UCB	Umbilical cord transplant
UD	Unrelated donors
UDCA	Ursodeoxycholic acid
VOD	Veno occlusive disease
VZV	Varicella zoster virus

List of Tables

Table No.	Title	Page No.
Table (1):	Organ Involvement.	40
Table (1):	GVHD prophylaxis medications	
1 able (2):	associated regimens and their way of a	
Table (3):	Clinical manifestations of chronic GVH	D55
Table (4):		83
Table (5):	Demographic data of the study group	100
Table (6):	Acute GVHD prophylaxis in the study	group 103
Table (7):	Acute GVHD grading in the study grou	ıp103
Table (8):	Acute GVHD stages in the study group	105
Table (9):	Pretransplant ABO blood	-
T 11 (10)	compatibility	
Table (10):	Donor sex distribution in the study gro	_
Table (11):	Sex compatibility among the study group	up 107
Table (12):	Female group donors	
Table (13):	Parity	108
Table (14):	IL-6 level distribution in the study grou	ар110
Table (15):	Pre transplant disease status in the	•
	group	
Table (16):	Engraftment status in the study group	111
Table (17):	Pre transplant CMV distribution is	
	study group.	112
Table (18):	Infection and VOD in the study group.	112
Table (19):	NRM in the study group	114
Table (20):	Pre transplant inflammatory markers study group.	
Table (21):	Major post-transplant complications is	in the
	study group.	
Table (22):	Relapse in the study group	116

List of Tables Cont...

Table No.	Title	Page No.
Table (23):	Acute GVHD	117
Table (24):	Acute GVHD	117
Table (25):	Relation between IL-6 level and sex study group	
Table (26):	Relation between IL-6 level and incidinfection in the study group	
Table (27):	Relation between IL-6 level and incid skin acute GVHD in the study group	
Table (28):	Relation between IL-6 level and incid liver acute GVHD in the study group.	
Table (29):	Relation between IL-6 level and incid GIT acute GVHD in the study group	
Table (30):	Relation between IL-6 level and reactivation in the study group	
Table (31):	Relation between IL-6 level and incid hemorrhagic cystitis in the study grou	
Table (32):	CMV Ig G-Donor	125
Table (33):	CMV IgG-Receipient	
Table (34):	Relation between IL-6 level Engraftment of neutrophils in the	study
T 11 (0=)	group	
Table (35):	Relation between IL-6 level and ES ferritin in the study group	127
Table (36):	Relation between IL-6 level and stedose in the study group	
Table (37):	Roc curve of IL-6 +7 to predict acute C	VHD130
Table (38):	Progression Free Survival	131
Table (39):	Overall survival for the study group	132
Table (40):		132

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Irradiation or chemotherapy	35
Figure (2):	The pathophysiology of chronic versus-host disease.	
Figure (3):		80
Figure (4):	Shows sex distribution among study	group 100
Figure (5):	Show different diagnoses among the population.	-
Figure (6):	Show different conditioning ramong the study population	_
Figure (7):	Shows acute GVHD grading am study population	_
Figure (8):	Shows acute GVHD organ occurrence among the study popular	-
Figure (9):	Shows donor sex distribution am study population.	•
Figure (10):	Shows sex compatibility between and donor among the study populat	-
Figure (11):	Shows sex parity between recipied donor among the study population	
Figure (12):	IL-6 level distribution in the study a	group 110
Figure (13):	Shows infections distribution am study population	
Figure (14):	Shows major post-transplant completion in the study group	
Figure (15):	Shows relapse distribution in th population.	e study
Figure (16):	Acute GVHD	118
Figure (17):	Acute GVHD	118
Figure (18):	Relation between IL-6 level and in of skin acute GVHD in the study greaters.	

List of Figures Cont...

Fig. No.	Title Pag	e No.
Figure (19):	Relation between IL-6 level and incider of liver acute GVHD in the study group.	
Figure (20):	Relation between IL-6 level and incider of GIT acute GVHD in the study group	
Figure (21):	CMV Ig G-Donor	125
Figure (22):	CMV IgG-Receipient	126
Figure (23):	Relation between IL-6 level and stem of dose in the study group	
Figure (24):	Relation between IL-6 level and stem of dose in the study group	
Figure (25):	Time from HSCT.	131

Introduction

Allogeneic hematopoietic cell transplantation (HSCT) is one of the curative therapeutic options for hematological malignancies (*Henden et al., 2015*). The host hematopoietic system is reconstituted with donor hematopoietic system and donor lymphocytes, especially T cells that have the potential to exert Graft Versus Tumor effects concurrently with graft-versus-host disease (*Mussetti et al., 2017*). Clinical data have shown that the severity of GVHD is negatively correlated with the chance of relapse (*Greco et al., 2016*). Acute GVHD is a major side effect of allogeneic HSCT.

Large number of pro inflammatory cytokines are involved in the pathophysiology of GVHD such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interferongamma (IFN-γ) (*Drobyski et al., 2018*). These cytokines are elevated after allogeneic BMT and affect GVHD through either direct cytotoxic effects on host tissues or by activation of immune effector cells (*Toubai et al., 2016*). Blockade of these cytokines modulated the severity of GVHD.

IL-6 is a cytokine that have broad effects, such as maturation and activation of B cells, T cells, and macrophages (*Tvedt et al.*, *2017*). IL-6 has been directly implicated in many human inflammatory diseases. Blockade of IL-6 signaling with anti–IL-6R monoclonal antibody Tocilizumab, has been shown to have therapeutic effects in many human diseases, such as