

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Effect of melatonin and nifedipine on brain neurotransmitters and cellular redox state of global ischaemic rats

A Thesis Presented By

Mona Farag Mohammad Schaalan

(B.Pharm. Science)

Submitted For the degree of

Master of Pharmaceutical Sciences

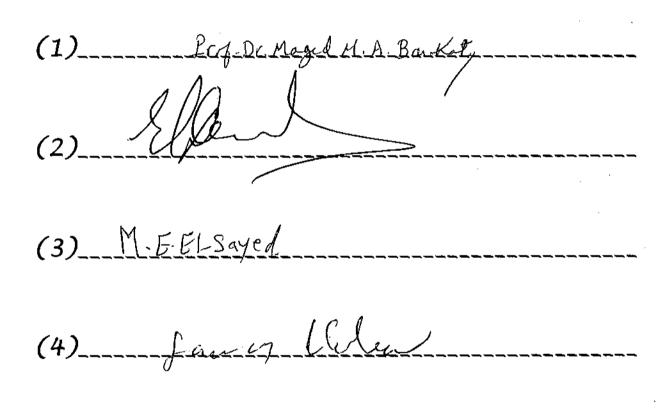
(Biochemistry)

Faculty of Pharmacy

Cairo University

2001

Under The Supervision of


Prof. Dr. Maged Barakat Prof. of Biochemistry Faculty of Pharmacy Cairo University Prof. Dr. Ezzeddín El Denshary Prof. of Pharmacology & Toxícology Faculty of Pharmacy Cairo University

Dr. Hanan Salah El-Abhar Lecturer of Pharmacology & Toxicology, Faculty of Pharmacy Cairo University

Approval Sheet

Approved:

Committee in Charge:

Date: 18 / 7 /2001

To my mother, husband and children Nour, Riem and Nadiem

Acknowledgment

First and foremost, Thanks are due to Allah.

Words cannot express my deep gratitude and sincere appreciation to Prof. Dr. Maged Barakat, Professor of Biochemistry, Faculty of Pharmacy, Cairo University, to whom I am indebted for his proposal of the point, valuable supervision, general encouragement, constructive criticism and guidance throughout the work.

I am honored to have Prof. Dr. Ezzeddin El Denshary, Prof. Of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University as a supervisor of this work. I would like to thank him for his active supervision, enlightening thoughts, useful comments and efforts in revising the manuscript.

Furthermore, I would like to extend my cordial appreciation to Dr. Hanan Salah El-Abhar, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University for her proposal of the point, kind supervision, indispensable remarks and continuous support and assistance during all stages of this work. She offered me most of her time and effort, as well as deep experience, in order to push me forward.

I would like to convey my special thanks to all my colleagues and members of the Pharmacology and Toxicology Department for their cooperation, continuous support, as well as kind receptiveness.

Abstact

The chief factors that play a role in ischaemic damage include calcium homeostasis, formation of free radicals, interruption of energy metabolism and disturbance in neurotransmission. A close correlation is evidenced to exist between ischaemia-induced surge of glutamate and the release of other neurotransmitters such as serotonin, NE and dopamine in brain ischaemic tissues. The elevated levels of such neurotransmitters are connected to the ischaemic dire events viz., brain oedema, Ca²⁺influx, excessive depolarization, energy failure and free radical formation. These events could perturb both synthesis and re-uptake mechanisms of these neurotransmitters. GABA, which is an inhibitory neurotransmitter, is expected to have a role, by counteracting the excessively released neuronal excitability.

The disturbance in brain energy metabolism, as a result of discrepancy between oxygen demand and supply, cause a decline in high energy phosphate, a lowering in the glucose level and accumulation of lactate level. Alternative energy substrates such as lactate and β - hydroxybutyrate (β -HB) could successfully replace the role of glucose

Upon reperfusion, which follows the ischaemic hour, free radicals are excessively released causing the so called" reperfusion injury". Antioxidant enzymatic systems, superoxide dismutase (SOD) and glutathione reductase (GR) are expected to trap the released free radicals in blood and brain, reflecting, thereby, the oxidation-reduction state.

Therefore, the aim of this work was to study the effect of melatonin, a well known free radical scavenger, and nifedipine, a Ca²⁺- channel blocker, on the previously mentioned neurotransmitters, energy substrates and antioxidant enzymes in both ischaemia and ischaemia/ reperfusion states. To fulfill this purpose, male adult Wistar rats were subjected to global ischaemia, by occlusion of the two carotid arteries for 1 hr, followed by their declamping for another hour. Drugs were injected after ischaemia in a group, and before or after reperfusion in another two groups. After killing the rats, their brains were removed, ice-cooled and dissected into four areas: cerebral cortex (C.C), thalamus and hypothalamus (Th/H.Th), midbrain (M.B) and medulla, pons and cerebellum (M.P.C).

Our study shows that ischaemia elevated all neurotransmitters under investigation, while declamping leveled off this increase close to normal levels. Melatonin (10mg/Kg; i.p.) and nifedipine (1.5mg/Kg; i.p.), when given after ischaemia averted nearly the ischaemic effect, while GABA levels were increased in ischaemia/ reperfusion (I/R) treated groups. Regarding 5-HT, melatonin injected in I/R groups increased their levels, while the effect of nifedipine was minimal.

Regarding the energy state, is chaemia elevated the brain content of β -hydroxybutyrate and the plasma levels of lactate, glucose and β -hydroxybutyrate. Recirculation succeeded to normalize the brain contents of glucose and β -hydroxybutyrate, as well as the plasma levels of lactate and β -hydroxybutyrate, while failed to correct the plasma levels of both lactate and glucose. Both drugs were able to normalize the ischaemia and I/R contents of the energy fuels.

Concerning the antioxidant enzymes (SOD & GR) and lactate dehydrogenase enzyme (LDH), ischaemia increased the activity of cytosolic LDH and erythrocytic GR, while decreased the activity of the cytosolic SOD and GR enzymes. Allowing blood to flow normalized the altered activities of the erythrocytic antioxidant enzymes as well as LDH, while elevated the cytosolic antioxidant activities. Both drugs were able to normalize the ischaemic effect on the erythrocytic SOD and GR activities added to the I/R effect on their cytosolic activities.

Contents 1- Aim of the work 2- Introduction - Factors involved in ischaemia: L. Eppergy feilure	
1- Aim of the work	1
2- Introduction	2
- Factors involved in ischaemia:	
I-Energy failure	4
II-Glucose utilization, energy metabolism and ketone bodies	8
III- Neurotransmitters:	16
- GABA	17
- NE	19
- DA	21
- 5-HT	23
IV- Excitatory amino acids	26
V- Role of Ca ²⁺	29
VI- Role of free radicals	32
- Defense against free radicals:	39
a) Superoxide dismutase enzyme	41
b) Glutathione reductase enzyme	43
- Neuroprotective drugs in ischaemia:	46
- Ca ²⁺ channel blocker (nifedipine)	47
- Free radical scavenger (melatonin)	48
3- Materials and methods:	
- Animals	52
- Chemicals and diagnostic kits	52
- Experimental design	54
- Groups under investigation	55
- Preparation of brain tissues and cytosole	56
- Separation of plasma and blood erythrocytes	56
- Biochemical estimation:	57

1. Determination of GABA content in different brain regions.	57
2. Determination of NE, DA and 5-HT contents in different	
brain regions.	60
3. Determination of SOD activity in blood erythrocytes and	
brain cytosole.	64
4. Determination of glutathione reductase activity in blood	
erythrocytes and brain cytosole.	66
5. Determination of lactate dehydrogenase activity in	
brain cytosole.	67
6. Determination of glucose content in plasma and	
brain homogenate.	68
7. Determination of lactate content in plasma.	69
8. Determination of β-hydroxy butyrate in plasma and	70
brain homogenate.	
4- Results	
I- Effect of melatonin and nifedipine on brain neurotran- mitters in normal, ischaemic (I) and ischaemia / reperfused (I/R) rats.	
II- Effect of melatonin and nifedipine on brain cytosolic antioxidant enzymes [superoxide dismutase (c-SOD) and glutathione reductase (c-GR)], as well as lactate dehydrogenase (c-LDH) activity, in normal, ischaemi (I) and ischaemia/reperfused (I/R) rats.	
III- Effect of melatonin and nifedipine on whole brain glucose and β-hydroxybutyrate content in normal, ischaemic (I) and ischaemia / reperfused (I/R) rats.	105
III- Effect of melatonin and nifedipine on plasma glucose β- hydroxybutyrate and lactate contents in normal, ischaemic (I) and ischaemia / reperfused (I/R) rats.	,

IV- Effect of melatonin and nifedipine on erythrocytic SOD and GR activity in normal, ischaemic (I) and ischaemia / reperfused (I/R) rats.	121
 5-Discussion	128
6-Summary and conclusions	151
7- References	154
8- Arabic summary	191

List of Figures

I. Introduction

	Page
Fig(1): Schematic concept of the mechanisms causing glial swelling in ischaemia	6
Fig(2): Schematic diagram summarizing why glutamate uptake fails during brain	
anoxia	8
Fig(3): Origin of lactic acid production during cerebral ischaemia	9
Fig(4): Intertissue relationship during starvation	13
Fig(5): Pathway of acetoacetate and β-hydroxybutyrate	. 14
Fig(6): Regulation of ketogenesis. (1)-(3) show three crucial steps in the pathway of	
metabolism of free fatty acids (FFA), that determine the magnitude of	
ketogenesis.	15
Fig(7): GABA metabolism. The metabolism is tied into the Krebs cycle through	
alpha-ketoglutarate	18
Fig(8): Diagram of catecholamine synthesis	20
Fig(9): Metabolism & degradation of serotonin	24
Fig(10): Diagram illustrating how activation of glutamate receptors open cation	
channels	27
Fig(11): The NMDA-receptor complex	28
Fig(12): The major features of cell Ca ²⁺ metabolism as exemplified by events	
which very likely occur in many neurones	30
Fig (13): Potential sources of superoxide and hydroxyl radicals in cerebral	
ischaemia.	36
Fig(14): Free radical - mediated cellular injury	37
Fig(15): Pathophysiological scheme of acute CNS injury	38
Fig(16): Mechanism proposed to explain the link between ischaemia/reperfusion -	
induced oxygen radical production, recruitement of granulocytes, and	
microvasular injury	39
Fig(17): A summary of cellular defense mechanisms.	41
Fig (18): Enzymatic defenses against free radical injury	45