

Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Department of Biochemistry

The effect of the flavonoid quercetin on the modulation of the amyloid pathway in Aluminum chloride-induced Alzheimer disease in rats

A Thesis submitted in Partial Fulfillment of the requirement for the Degree of

Master of Science in Biochemistry

By

Hala Ali Abd-Elrhman Mohamed

B.SC. in Biochemistry Department (2016), Faculty of Science El Minia University

To

Department: Biochemistry
Faculty of Science - Ain Shams University

Supervised by

Pro.Dr. Mohamed Abd-Elhady Ghazy

Prof.Dr. Khadiga Salah Eldin Ibrahim

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University Professor of Biochemistry Environmental and Occupational Medicine Department National Research Center

Dr. Asmaa Ahmed Mahmoud

Assistant Professor of Physiology Zoology Department Faculty of Science Ain Shams University

Year (2022)

Acknowledgment

I am deeply thankful to **Allah**, by the grace of whom the progress and success of this work was possible and without whose mercy and guidance this work would neither has been started nor completed I am greatly indebted and grateful to **Prof. Dr. Mohamed Abd-Elhady Ghazy**, Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for his endless help, consent guidance, sincere encouragement, valuable remarks and profound revision of the text.

I am heartily thankful to **Prof. Dr. Khadiga Salah Eldin Ibrahim**, Professor of Biochemistry, Environmental and Occupational Medicine Department, National Research Centre, for insightful comments and suggestions and for her assistance at every stage of this study.

I would like to express my sincere gratitude to Dr. Asmaa Ahmed Mahmoud, Assistant Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University, for her support and great effort for helping me throughout all stages of this study.

Words cannot express my deep gratitude and appreciation to **Dr. Asmaa Mohamed Ahmed Elfiky,** Researcher of Biochemistry, Environmental and
Occupational Medicine Department, National Research Centre for her keen
supervision, sincere encouragement, unlimited help, continuous guidance,
constructive criticism and her valuable advice throughout this work. It is a
great honor for me to work under her supervision throughout my
postgraduate career.

Also, I would like to express my deepest sincere thanks to my family for encouraging and supporting me throughout my life and study.

Finally, I would like to thank everyone who gave me a hand throughout this study. Thank you all for your cooperation.

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease clinically characterized by progressive cognitive impairment. Exposure to aluminum (Al), a potent neurotoxin, causes oxidative stress and initiates the development of Alzheimer's disease. Quercetin (O), a bioflavonoid, has been reported to slow down AD progression. The aim of this study was to look into the role of O in treating and protecting AlCl₃-induced AD rats by looking into the molecular processes that underpin its neuroprotective and therapeutic effects. In this study, male Wistar rats were subjected to a two independent experiments; experiment I (effect of post treatment with quercetin) in which the rats were distributed into; a normal control group which induced with saline for 56 days, two quercetin doses groups that is orally administrated with Q (25 and 50 mg/kg) for 28 days after induction with saline for 28 days, AD group, that is IP(Intraperitoneally) administrated with AlCl₃(50 mg/kg) for 28 days followed by saline for 28 days, and the treated groups :(AlCl₃ followed by Q25), and (AlCl₃ followed by Q50) for 28 days, as well as, experiment II (Coadministration of AlCl₃) with quercetin) that divided into a normal control (NC) group, two quercetin doses (both 25 and 50 mg/kg) groups, AlCl₃ (AD) group, co-administration with AlCl₃ + Q25 group, and co-administration with AlCl₃ + Q50 group for 56 consecutive days. Behavioral assessments were carried out on rats in the final week of both experiments. Hippocampi were collected for neurochemical and histological evaluations, as well as gene expression assessment. The results of experiment 1 demonstrated that administration of Q to an AlCl₃-induced AD rat model reduced behavioral impairments, improved cholinergic and dopaminergic dysfunctions, and decreased the formation of insoluble amyloid plaques in the hippocampus. In the hippocampus, these beneficial effects of Q were linked to downregulation of

APP, BACE1, APH1, and PSEN1 and upregulation of ADAM10 and ADAM17 gene expression levels. Moreover, experiment 2 resulted in; the co-administration of quercetin (50 mg/kg) has a substantial effect on learning and memory deficits by reducing eosinophilic plagues and β -amyloid plague deposits, as well as restoring the activity of Acetylcholine esterase (AchE) and increasing dopamine (DA) level. Furthermore, it significantly decreased levels of amyloid precursor protein (APP), β-amyloid converting enzyme 1 (BACE1), and Presenilin I (PSEN1) and increased the expression of ADAM17 in the hippocampus tissue compared to AlCl₃ group. Conclusion: Q treatment might attenuate neurotransmission impairment, Aß aggregation in the hippocampus, and behavioral deficits in the AlCl₃-induce AD rat model via up-regulating and stimulating the non-amyloidogenic pathway leading to the inhibition of the amyloidogenic pathway in the mild Alzheimer. In addition, co-administration of quercetin with the AlCl₃induced AD rats could also inhibit the progression of cognitive impairment in the hippocampus tissue in the severe AD through inhibition of the genes of the amyloidogenic pathway.

Contents

List of AbbreviationsIV
List of TablesIII
List of FiguresV
Introduction
Aim of work4
1. Review of literature5
1.1. Dementia
1.1.1.Degenerative dementias
1.1.1.1.Cortical dementia
1.1.1.2. Subcortical Dementia
1.1.1.3. Lewy Body Dementia (LBD)
1.1.2. Vascular Dementia (VaD)
1.1.3. Mixed Dementia
1.2. Alzheimer Disease
1.2.1. AD risk factors
1.2.1.1. Environmental factors
1.2.1.2.Age, genetics and family history
1.2.1.2. a. Age
1.2.1.2. b. Genetics
1.2.1.2. c. Family history
1.2.1.3. Modifiable risk factors
1.2.1.3.a. Cardiovascular disease risk factors
1.2.1.3.b. Education
1.2.1.3. c. Social and cognitive engagement
1.2.1.4.Traumatic brain injury (TBI)
1.2.1.5. Uncommon genetic changes that increase risk
1.2.1.5.a. Genetic mutations

1.2.1.5.b. Trisomy in Down syndrome
1.2.2. Pathological hallmarks of AD
1.3. AD Treatment 28
1.3.1. Quercetin
1.3.1.2. Anti-Alzheimer's Disease Mechanisms of Quercetin 1.3.1.2.a.
Inhibition of AβAggregation and Tau Phosphorylation
1.3.1.2.b. Acetylcholinesterase Inhibition
1.3.1.2.c. Attenuation of Oxidative Stress
2. Materials and methods41
2.1. Drugs and chemicals
2.2. Animals
2.3. Experimental setting
2.3.1. Experiment I (effect of post treatment with quercetin)
2.3.2. Experiment II (coadministration of AlCl ₃ with quercetin) 43
2.4. Behavioral assessment
2.4.1. Open field test
2.4.2. Y-maze spontaneous alternation test
2.4.3.Social interaction test
2.5. Sample collection
2.6. Histological procedures
2.7. Assessment of dopamine levels and acetylcholinesterase activity 47
2.8. RNA extraction and cDNA synthesis
2.9. qRT-PCR
2.10. Statistical analysis50
3. Results
3.1. Experiment I (Effect of post treatment with quercetin)
3.1.1. Behavioral assessment
3.1.1.1. Open-field test (OPT)
3.1.1.2. Y-maze spontaneous alternation test

3.1.1.3. Social interaction test
3.1.2. Effect of post treatment with quercetin on body weight 60
3.1.3. Histological results
3.1.3.1. Effect of post treatment with quercetin on hippocampal $A\beta$
plaques formation
3.1.4. Effect of post treatment with quercetin on expression of alpha,
beta and gamma secretases genes in the hippocampus tissue
3.1.4.1. Effect of post treatment with quercetin on expression of APP
and beta secretase (BACE1) genes
3.1.4.2. Effect of post treatment with quercetin on expression of
gamma secretases (APH1&PSEN1) genes 67
3.1.4.3. Effect of post treatment with quercetin on expression of alpha
secretases (ADAM10&ADAM17) genes
3.1.5. Biochemistry results
3.1.5.1. Effect of post treatment with quercetin on Acetylcholine
esterase (AchE) activity in the hippocampus tissue71
3.1.5.2. Effect of post treatment with quercetin on Dopamine (DA)
level in the hippocampus
3.2. Experiment II (protective effect of Q)
3.2.1. Behavioral assessment
3.2.1.1. Open-field test (OPT)
3.2.1.2. Y-maze spontaneous alternation test
3.2.1.3. Social interaction test
3.2.2. Effect of co-administration of quercetin with AlCl ₃ on body
weight
3.2.3. Histological examination
3.2.4. Effect of co-administration of quercetin with AlCl ₃ on expression
of alpha, beta and gamma secretases genes in the hippocampus tissue 88
3.2.4.1. Effect of co-administration of quercetin with AlCl ₃ on

expression of APP and beta secretase (BACE1) genes
3.2.4.2. Effect of co-administration of quercetin with AlCl ₃ on
expression of gamma secretase (APH1&PSEN1) genes 90
3.2.4.3. Effect of co-administration of quercetin with AlCl ₃ on
expression of alpha secretases (ADAM10&ADAM17) genes 92
3.2.5. Biochemistry results
3.2.5.1. Effect of co-administration of quercetin with AlCl ₃ on
Acetylcholine esterase (AChE) activity in the hippocampus 94
3.2.5.2. Effect of co-administration of quercetin with AlCl ₃ on
dopamine (DA) levels in the hippocampus96
4. Discussion
5. Summary
6.Recommendatiom124
7.References

List of Abbreviations

AD	Alzheimer's disease
AChE	Acetylcholine Esterase
ADAM	Membrane-bound disintegrin metalloproteinase
AICD	APP intracellular domain
AlCl ₃	Aluminum chloride
Alum	Aluminum sulphate
Aph1	Anterior pharynx-defective 1
APOE	Apolipoprotein E
APP	Amyloid precursor protein
APP CTF83/αCTF	APP C-terminal fragment 83
APP βCTF/C99	membrane-associated C-terminal APP fragment
Αβ	Amyloid-Beta
BACE1	β-secretase 1
BBB	Blood Brain Barrier
BChE	Butyryl cholinesterase
CAA	Cerebral Amyloid Angiopathy
CDK5	Cyclin dependent kinase
COX-2	cyclo oxygenase 2
DA	Dopamine
DTNB	5,5'-dithio-bis-2-nitrobenzoic acid
EOAD	Early-Onset Alzheimer Disease
ер	eosinophilic plaques
GSK-3β	Glycogen synthase kinase 3 beta
H & E	Hematoxylin and eosin stain
НС	Habenular Commissure
HD	Huntington's disease
IL-6	Interleukin 6
iNOS	inducible nitric oxide synthase
IP	Intraperitoneally
IRE	Iron responsive element
LB	Lewy bodies

LBD	Lewy Body Dementia
LOAD	late-onset Alzheimer's disease
MAPKs	Mitogen Activated Protein Kinase
MCI	Mild cognitive impairment
MD	Mixed Dementia
Nct	Nicastrin
NF-kB	Nuclear factor kappa B
NFT	Neurofibrillary tangles
NMDA	N-methyl-d-aspartate
Nrf-2	Nuclear factor (erythroid-derived 2)-like 2
PD	Parkinson's disease
PDD	Parkinson's disease dementia
Pen-2	Presenilin enhancer 2
PI3K/Akt/GSK3β	$phosphoinositide 3 \ kinase/protein \ kinase \ B/Glycogen \\ synthase \ kinase 3 \beta$
pn	pyramidal neuron
PON2	paraoxonase 2
PP2A	protein phosphatase 2A
PSEN1	Presenilin 1
Q	Quercetin
ROS	Reactive Oxygen Species
SAP97	Synapse-associated protein 97
sAPP	soluble APP-fragment
SE	Standard error of mean
SOD	superoxide dismutase
SP	Senile plaques
TACE	Tumor necrosis factor-alpha converting enzyme
TBI	Traumatic brain injury
TNF-alpha	tumor necrosis factor-alpha
VaD	Vascular Dementia
WHO	World Health Organization

List of Tables

Table 1: Quercetin content in selected vegetables and fruits(mg/100 g)32
Table 2: specific primer sequences
Table 3: Effect of post treatment with quercetin on locomotor and exploratory activities, and
anxiety-like symptom in the open-field test in AlCl ₃ - induced AD rats53
Table 4: Effect of post treatment with quercetin on spatial recognition (working) memory,
sociability and anxiety-like behavior, in AlCl ₃ - induced AD rats 57
Table 5: Effect of post treatment with quercetin on body weight change in AD-induced rats.
61
Table 6: Effect of post treatment with quercetin on APP and BACE1 gene expression in AD
rat hippocampus tissue
Table 7: Effect of post treatment with quercetin on APH1 and PSEN1 gene expressions in
AD rat hippocampus tissue and the effect of Q on it
Table 8: Effect of post treatment with quercetin on ADAM10 and ADAM17 gene
expressions70
Table 9: Effect of post treatment with quercetin on AchE activity and dopamine level in
hippocampus in AlCl ₃ - induced AD rats
Table 10: Effect of co-administration of quercetin with AlCl ₃ on locomotor and exploratory
activities, and anxiety-like symptom in the open-field test in AlCl $_3$ - induced AD rats76
Table 11: Effect of co-administration of quercetin with AlCl ₃ on spatial recognition
(working) memory, sociability and anxiety-like behavior, and anxiety-like behavior in AlCl ₃ -
induced AD rats
Table 12: Effect of co-administration of quercetin with AlCl ₃ on body weight change in AD-
induced rats
Table 13: Effect of co-administration of quercetin with AlCl ₃ on APP and BACE1 gene
expression in AD rat hippocampus tissue

List of Tables

Table 14: Effect of co-administration of quercetin with AlCl ₃ on APH1 and PSEN1 gene	
expression in AD rat hippocampus tissue91	
Table 15: Effect of co-administration of quercetin with AlCl ₃ on ADAM10 and ADAM17	
gene expression in AD rat hippocampus tissue93	;
Table 16: Effect of co-administration of quercetin with AlCl ₃ on AChE activity and	
dopamine level in AlCl ₃ - induced AD rats95	;

List of Figures

Figure1: AD continuum
Figure2: Factors that modify the risk of AD22
Figure 3: the proteolytic processing of amyloid precursor protein (APP) via non-
amyloidogenic and amyloidogenic cleavage
Figure 4: Schematic presentation of the pathogenesis of AD
Figure 5: The chemica skeleton of quercetin31
Figure 6: Anti-Alzheimer's disease targets of quercetin
Figure 7: Quercetin's mechanistic insights into AD
Figure 8: Effect of post treatment with quercetin on latency in the open-field test in AlCl ₃ -
induced AD rats
Figure 9: Effect of post treatment with quercetin on ambulation in the open-field test in
AlCl ₃ - induced AD rats54
Figure 10: Effect of post treatment with quercetin on rearings in the open-field test in AlCl ₃ -
induced AD rats54
Figure 11: Effect of post treatment with quercetin on grooming time in the open-field test in
AlCl ₃ - induced AD rats
Figure 12: Effect of post treatment with quercetin on freezing time in the open-field test in
AlCl ₃ - induced AD rats
Figure 13: Effect of post treatment with quercetin on spatial recognition memory
(spontaneous alternation rate (%) and same arm returns) in Y-maze test in AlCl $_3$ - induced AD
rats
Figure 14: Effect of post treatment with quercetin on sociability and anxiety-like behavior
(A: social investigation frequency and frequency of social contact behavior) in social
interaction test in AlCl ₃ - induced AD rats