

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Concrete Slabs Reinforced with Basalt Fiber Bars

A THESIS

Submitted in partial fulfillment of the requirement for the degree of Master of Science

By HUSSEIN ELSAYED HUSSEIN ZAMEL B.Sc., Civil Engineering (2014), Ain Shams University.

Supervised by

Prof. Dr. Omar Ali Elnawawy

Professor of Concrete Structures.
Structural Engineering Department.
Faculty of Engineering- Ain Shams University.

Dr. Yasser Mohamed Samir

Assistant Professor.
Structural Engineering Department.
Faculty of Engineering.
Ain Shams University.

Dr.Khaled Sami Abdullah

Assistant Professor.
Civil Engineering Department.
New Cairo Institute for
Engineering &
Technology.

Ain Shams University Faculty of Engineering Structural Engineering Department

Behavior of Concrete Slabs Reinforced with Basalt Fiber Bars

A THESIS By HUSSEIN ELSAYED HUSSEIN ZAMEL

The examine committee considers a thesis satisfactory and accepted for the award of the degree of Master of Science in civil engineering

EXAMINERS COMMITTEE

Referees Committee: Prof. Dr. Ibrahim Galal Shaaban Professor of Concrete Structures, Structural Engineering Department, West London University Prof. Dr. Amr Hussein Zaher Professor of Concrete Structures, Structural Engineering Department, Ain Shams University Prof. Dr. Omar Ali Elnawawy Professor of Concrete Structures, Structural Engineering Department, Ain Shams University

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in partial

fulfillment of the requirements for the degree of Master of Science in Civil

Engineering (Structural).

The work included in this thesis was carried out by the author at reinforced

concrete lab of the faculty of engineering, Mataria, Helwan University.

No part of this thesis has been submitted for a degree or qualification at any

other university or institute.

Date :

22/12/2019

Name

Hussein Elsayed Hussein

Zamel Signature

Hussein Zamel

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation and deep gratitude to **Prof. Dr.**Omar Ali Elnawawy, professor, Structural Engineering Department, Ain Shams University, Cairo, Egypt, for his guidance kind supervision at each part of the thesis.

The author extends his sincere appreciation to **Dr. Yasser Samir Hassan**, professor, Structural Engineering Department, Ain Shams University, Cairo, Egypt, for his constant encouragement and fruitful supervision throughout the work.

The author is deeply indebted to **Dr. Khaled Sami Abdullah**, Assistant professor, Civil Engineering Department, New Cairo Institute, Cairo, Egypt, for his constant supervision, guidance, advice and encouragement during the progress of this research.

The author, also, wishes to express his thanks to all the staff of the Structural Engineering Department, especially that of the materials science laboratory in the Faculty of Engineering for their sincere help during this work.

Finally, I wish to thank all professor doctors for supervision on my thesis, their constant support and encouragement.

ABSTRACT

This thesis presents an experimental and investigation on the behavior of concrete slabs reinforced with basalt fiber bars. This research focused on the application of the BFRP-bars as reinforcement of concrete slabs. The polypropylene fibers were also added to the concrete mix to improve the behavior of the slabs. The experimental program was done at the Materials Testing Laboratory of the Faculty of Engineering Mataria, Helwan University, Cairo by using most of the materials available in the Egyptian market. Using imported BFRP-bars with diameters of 12 mm with a length of 2000 mm.

The experimental program examined the impact of different parameters on the behavior of the concrete slabs. These parameters were:

- 1. Bars type: Steel, and Basalt fibers.
- 2. Three reinforcement percentages: (0.57%, 0.75%, 0.94% respectively).
- 3. Quantity of polypropylene fibers: (0, 1.5 and 2kg/m³) added to concrete.
- 4. Compressive strength of the concrete: (250, 300, 350 kg/cm²).

The key test results demonstrated that the specimens, reinforced with BFRP-bars, had higher deflection and strain than it of the specimen reinforced with steel and consequently it had lower stiffness. The cracking and ultimate load of the specimens reinforced with BFRP-bars was lower than it of the specimen reinforced with steel.

On the other hand, adding the polypropylene fibers had a great effect on the mechanical characteristics of the concrete mix as it led to narrower and more uniformly distributed cracks, reduce the deflection and strain of the specimen, reinforced with BFRP-bars, by 51% and 61% respectively and increasing the ultimate load of these sample to 99% of the ultimate load of Steel Sample.

Finally, we can overcome the problem of the steel corrosion and saving high costs of periodic maintenance at cost increase of 60% only.

Keywords: BFRP-bars, RC slabs; reinforcement ratio; polypropylene fibers; Compressive strength of concrete. Compressive strength of the concrete;

TABLE OF CONTENTS

ABSTRACT	I
TABLE OF CONTENTS	II
LIST FIGURE	VI
LIST TABLE	IX
Chapter 1 INTRODUCTION	1
1.1 General	2
1.2 Objectives of the Thesis	3
1.3 Contents	3
Chapter 2 LITERATURE REVIEW	5
2.1 Introduction	6
2.2 FRP Composite Materials	7
2.2.1 Reinforcements (Fibers)	7
2.2.1.2 Glass Fibers	8
2.2.1.3 Aramid Fibers	8
2.2.1.4 Basalt Fibers	9
2.2.2 Matrix Resins	9
2.2.2.1 Polyester Resin	10
2.2.2.2 Vinyl ester Resin	10
2.2.2.3 Epoxy Resin	11
2.3 Mechanical Properties of the FRP-Bars.	11
2.3.1 Axial Tensile Strength	12
2.3.2 Tensile Elastic Modulus	12
2.3.3 Compressive Strength	12
2.3.4 Bond Strength of the Bars	13
2.3.5 Shear Strength	13
2.4 Physical Properties	14
2.4.1 Specific Gravity	14

2.4.2 Thermal Expansion	14
2.5 Previous Experimental Works	15
Chapter 3 PROPERTIES OF THE USED MATERIALS	23
3.1 Introduction	24
3.2 Materials used in our Research	24
3.2.1 Component of the Basalt Fiber Polymer - Bars	24
3.2.1.1 Reinforcements (Fibers)	25
3.2.1.2 Matrix Resins	26
3.3 Methods of Manufacturing of FRP - Bars	26
3.3.1 Pultrusion Methods	26
3.3.3 Filament Winding	29
3.4 Properties of Basalt Fibers Polymer – Bars (BFRP-Bars)	30
3.4.1 Physical Properties	30
3.4.1.1 Unit Weight of BFRP - Bars	30
3.4.1.2 Fiber -Volume Fraction (VF)	31
3.4.2 Mechanical Properties	32
3.4.2.1 Tensile properties of the BFRP - Bars	32
3.4.2.2 Stress-Strain Curves of the BFRP - Bars	33
3.4.2.3 Shear Strength	34
3.5 Concrete Components	34
3.5.1 Aggregate	35
3.5.1.1 Particle Shape and Texture	35
3.5.1.2 Bond of Aggregate	36
3.5.1.3 Test of Aggregate	36
3.5.1.3.1 Sieve Analysis	36
3.5.1.3.2 Specific Weight of Coarse & Fine Aggregates	40
3.5.1.3.3 Crushing Factor of Coarse Aggregate	41
3.5.2 Cement	43
3.5.2.1 Cement Fineness	43

3.5.2.2 Cement Compressive Strength	44
3.6 Mix Design	50
3.6.1 Mix Design for $(F_{cu}=25 \text{ N/mm}^2)$	50
$3.6.2 \text{ Mix Design for } (F_{cu}=30 \text{ N/mm}^2)$	53
3.6.3 Mix Design for $(F_{cu}=35 \text{ N/mm}^2)$	55
3.7 Properties of Fresh Concrete	56
3.7.1 Workability	57
3.7.1.1 Definition of Workability	57
3.7.1.2 Factors Affecting Workability	57
3.7.1.3 Preparing Test Specimens from Fresh Concrete	58
3.7.1.4 Measurement of Workability	59
3.7.1.4.1 Slump Test	59
Chapter 4 EXPERIMENTAL INVESTIGATION, ANALYSIS AND DISCUSSION OF RESULTS	63
4.1 Experimental Program	64
4.2 Shows the Casting of The Specimens.	65
4.3 Test Setup	66
4.4 Measuring Devices	67
4.4.1 Deflection Devices	67
4.4.2 Strain Devices	67
4.5 Test Procedure	69
4.6 Experimental Work	70
4.7 Testing and Results	80
4.7.1 Cracks Pattern and Mode of Failure	80
4.7.1.1 Effect of the Area of Reinforcement	81
4.7.1.2 Effect of The Compressive Strength of Concrete	81
4.7.1.3 Effect of Adding The Polypropylene Fibers to The Concrete Mix	81
4.7.2 Load - Deflection Relationship	91
4.7.2.1 Effect of Area of Reinforcement on Load -Deflection Relationship	109

4.7.2.2 Effect of Adding The Polypropylene Fibers to The Concrete Mix	
on The Load - Deflection Relationship	109
4.7.2.3 Effect of The Concrete Compressive Strength on The Load - Deflection Relationship	110
4.7.3 Cracking And Failure Loads	110
4.7.3.1 Effect of Area of Reinforcement	116
4.7.3.2 Effect of Adding The Polypropylene Fibers to The Concrete Mix	117
4.7.3.3 Effect of Concrete Compressive Strength	117
4.7.4 Deformed Shapes	118
4.7.4.1 Effect of Area of Reinforcement on Deformed Shapes of Slabs	121
4.7.4.2 Effect of Adding The Polypropylene Fibers to The Concrete Mix on The Deformed Shapes of Slabs	122
4.7.4.3 Effect of The Concrete Compressive Strength on Deformed Shapes of Slabs	122
4.7.5.1 Effect of Area of Reinforcement on Load-Strain Relationship	126
4.7.5.2 Effect of Adding The Polypropylene Fibers to The Concrete Mix on The Load-Strain Relationship	126
4.7.5.3 Effect of Concrete Compressive Strength on The Load-Strain Relationship	126
Chapter 5 SUMMARY AND CONCLUSIONS	127
5.1 Summary	128
5.2 Conclusions	128
5.3 Recommendations For Future Work	130
Reference	131
ملخص الرسالة	136

LIST FIGURE

Figure	page
Figure 2.1 : Stress-Strain Curves of FRP-Rods	14
Figure 2.2 : Tested Basalt and Glass FRP- Bars	18
Figure 2.3 : DSC Scans for Glass Transition Temperature	19
Figure 2.4 : Influence of Conditioning in the Alkaline Solution at 60°C on the Mechanical Properties	21
Figure 3.1 : The Basalt Fibers Rolls	25
Figure 3.2.a: Pultrusion Process with Heated	27
Figure 3.2.b : Pultrusion Process without Heated	27
Figure 3.3 : Vacuum Compaction Processing	28
Figure 3.4 : The Filament Winding Process	29
Figure 3.5 : Standard Sieves	37
Figure 3.6 : Coarse Aggregate Sieve Analysis	38
Figure 3.7 : Fine Aggregate Sieve Analysis	39
Figure 3.8 : Graduated Cylinder	40
Figure 3.9 : Steel Cylinder with Open Ends	42
Figure 3.10 : Compression Machine	42
Figure 3.11 : Sieve #170	43
Figure 3.12 : Strength Development of Concrete with a W/C Ratio of 0.49 Made with Cement of Different Types	44
Figure 3.13 : Apparatus Used in Cement Compressive Strength Test	45
Figure 3.14 : Failure Modes of Cement Test Tubes	47
Figure 3.15 : Vicat Apparatus (ASTM C266)	48
Figure 3.16: Height of Vicat Needle versus Time	49
Figure 3.17 : Value of Standard Deviation	50
Figure 3.18 : Relation between W/C Ratio & Percentage of Fine Aggregate	51
Figure 3.19 : Relation between W/C Ratio & Compressive Strength of Concrete	52
Figure 3.20 : Relation between W/C Ratio & Density of Concrete	53
Figure 3.21 : Mould Types and Shapes	59