

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

A NEW PROCESS INTEGRATION AND INTENSIFICATION OF CUMENE PRODUCTION

By

ESRAA KHALED ALI DARWISH

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE
in

CHEMICAL ENGINEEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2020

A NEW PROCESS INTEGRATION AND INTENSIFICATION OF CUMENE PRODUCTION

By

ESRAA KHALED ALI DARWISH

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Fatma Al-Zahraa Ashour Prof. Dr. Mohamed Amin El-Shahir

Professor of Chemical Engineering
Chemical Engineering
Faculty of Engineering, Cairo University

Professor of Chemical Engineering

Chemical Engineering

Faculty of Engineering, British University in

Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2020

A NEW PROCESS INTEGRATION AND INTENSIFICATION OF CUMENE PRODUCTION

By

ESRAA KHALED ALI DARWISH

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

CHEMICAL ENGINEERING

Approved by the	
Examining Committee	
Prof. Dr. Fatma Al-Zahraa Ashour,	Thesis Main Advisor
Prof. Dr. Reem Mohamed Elttouney,	Internal Examiner**
Prof. Dr. Guzine Ibrahim El Diwani, - Professor at National Research Center	External Examiner**

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2020

Engineer: Esraa Khaled Ali Darwish

Date of Birth: 12 /02/ 1994 **Nationality:** Egyptian

E-mail: esraa.khaled@bue.edu.eg

Phone: +201009933375
Address: Shorouk City
Registration Date: 01/10/2016

Awarding Date: / /

Degree: Master of Science **Department:** Chemical Engineering

Supervisors: Prof. Dr. Fatma Al-Zahraa Ashour (Thesis Main Advisor)

Prof. Dr. Mohamed Amin El-Shahir (Advisor)

 Vice Dean for Research and Postgraduates studies, Head of Chemical Engineering. - Faculty of Engineering at The British

University in Egypt

Examiners: Prof. Dr. Guzine Ibrahim El Diwani (External Examiner)

-Professor at National Research Center

Prof. Dr. Reem Mohamed Elttouney (Internal Examiner)

Prof. Dr. Fatma Al-Zahraa Ashour (Thesis Main Advisor)

Title of Thesis: A New Process Integration and Intensification of Cumene Production

Key Words: Pinch Technology, energy target, Cumene, Reactive Distillation, and Process Intensification.)

Summary:

In this Study, two plant designs for Cumene Production, Turton's Conventional process and Reactive distillation process were investigated. The conventional process was modelled using ASPEN HYSYS and the current HEN was revamped. Furthermore, a new design for the HEN was modeled using ASPEN Energy Analyzer. On the other hand the flow sheet for the Reactive Distillation process was modeled using ASPEN Plus using new chemical kinetics. Then an economic analysis was performed on both processes to identify the most optimum plant design to implement in Egypt.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Esraa Khaled Date: 6/10/2020

Signature: Esraa

Dedication

I dedicate this work to my parents; they were my biggest supporters.

Acknowledgments

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to Allah, the Lord of the worlds; and prayers and peace be upon Mohamed His servant and messenger. First and foremost, I must acknowledge my limitless thanks to Allah, the Ever-Magnificent; the Ever-Thankful, for His help and bless. I am grateful to some people, who worked hard with me from the beginning till the completion of the present research particularly my parents for their continuous support, guidance and inspiration. Second my supervisors Prof. Fatma, Prof. Mohamed Amin and Dr. Dina who have been always generous during all phases of the research, and I highly appreciate their efforts. I would like to take this opportunity to say warm thanks to all my beloved friends, who have been so supportive along the way of doing my thesis. I also would like to express my wholehearted thanks to my family for their generous support they provided me throughout my entire life and particularly through the process of pursuing the master's degree. Because of their unconditional love and prayers, I had the chance to complete this thesis.

Table of Contents

List of Tables	VII
List of Figures	VIII
Nomenclature	IX
Abstract	X
Chapter 1: Introduction	1
1.1. Optimization approach	1
1.2. Motivation and Objective of the work	2
1.3. Overview of the thesis	2
Chapter 2: Literature Review	4
2.1. Background	4
2.2. Applications and Uses of Cumene	5
2.3. Chemical Reactions Mechanisms	7
2.4. Cumene Production Processes	9
2.4.1 Conventional Process	9
2.4.2. Trans-alkylation technology	11
2.4.3. Two-flash energy integrated technology	
2.4.4. Dividing wall column technology	14
2.4.5. Reactive Distillation technology	16
2.4.6. Double-effect distillation technology	
2.5. Reactive Distillation Technology	
2.5.1. RD: from concept to industrial applications	20
2.5.2. Modelling of Reactive Distillation	21
2.6. Environmental Impact	22
2.6.1 Eco-indicators	23
2.7. Safety and Hazards	26
2.7.1. Hazard Summary	26

2.7.2. S	Sources and Potential Exposure	26
2.7.3. H	Health Effects	26
2.7.4. S	Safety Information	27
Chapter 3:	Optimization and Intensification approach	30
3.1. Pinch	n Analysis	30
3.1.1. 0	Composite Curves	30
3.1.2. 0	Grand Composite Curves	31
3.2. Proce	ess Intensification	32
3.3. Econ	omic Analysis	34
3.3.1. 0	Capital Investment	34
3.3.2. U	Jtility Cost	34
3.3.3. C	CAPCOST Program	35
3.3.4. P	Procedure for the new approach	36
Chapter 4:	Case Study	38
4.1. Tu	rton's Process Description	38
4.2. Re	eactive Distillation Process Description	43
4.3. Ca	se Study Objectives	45
Chapter 5:	Results and Discussion	46
5.1. Tu	rton's Design	46
5.1.1.	HYSYS Simulation	46
5.1.2.	Validation of results	47
5.1.3.	Heat Integration using Pinch Technology	50
5.2. Re	eactive Distillation	58
5.3. Ec	onomic Analysis	62
5.3.1.	Modified HEN	62
5.3.2.	New HEN design	64
5.3.3.	Economic Analysis on Cumene Production Plant	65
Chapter 6:	Conclusions and Future Work	71

Appendix A: Physical and Chemical Properties	81
Appendix B	88
Appendix C	98

List of Tables

Table 2.1: Reaction Kinetics for the conventional process [21]	9
Table 2.2: Trans-alkylator reaction kinetics [24]	
Table 2.3: Reaction kinetics for the RD process [24]	16
Table 2.4: Eco-indicator comparison for different cumene production technologies [21]	25
Table 2.5: Safety information Summary for Raw Materials [59]–[64]	27
Table 2.6: Safety Information Summary for Products [57], [65]–[68]	
Table 3.1: Cost of Utilities (from CAPCOST software)	
Table 4.1: Process streams operating conditions	
Table 4.2: Reaction Kinetics	
Table 4.3: Distillation Columns Conditions	40
Table 4.4: Molar Composition of main streams	41
Table 4.5: Energy Consumption in Heaters and Coolers	41
Table 4.6: Heat exchangers details	41
Table 4.7: Details of Hot and Cold Streams	42
Table 4. 8: Reaction kinetics for the RD process [24]	44
Table 5.1: Comparison between Base Case data and HYSYS results	17
Table 5.1: Comparison between Molar composition of Base Case data and HYSYS results	
Table 5.3: Comparison between Notar composition of Base Case data and HYSYS results	
Table 5.4: Comparison between Heat duties in Base Case data and HYSYS results	
Table 5.5: Available and new area for the optimized HEN V1	
Table 5.6: Used Utility and required Duties modified HEN V1	
Table 5.7: Available and new area for the optimized HEN V2	
Table 5.8: Used utilities and required duties in modified HEN V2	
Table 5.9: Available and new area for the optimized HEN V3	
Table 5.10: Used utilities and required duties in modified HEN V3	
Table 5.11: Areas of Heat Exchangers for the new design	
Table 5.12: Used utilities and their duties in the new design	
Table 5.13: Chemical Kinetics in RD	59
Table 5.14: RD process streams operating conditions	61
Table 5.15: RD process streams molar composition	
Table 5. 16: RD and Distillation column details	
Table 5.17: Economic Analysis on modified HEN results.	
Table 5.18: Economic Analysis on new HEN design results	
Table 5.19: Table for the Bare Module Cost for all equipment in Turton design	
Table 5.20: Table for the Bare Module Cost for all equipment in RD	68

List of Figures

Figure 2.1: World Consumption of Cumene [16]	6
Figure 2.2: Global Demand of Cumene [17]	7
Figure 2.3: Alkylation Reaction Mechanism [19]	8
Figure 2.4: Trans-alkylation Reaction Mechanism [19]	
Figure 2.5: Turton's design flow sheet [23]	
Figure 2.6: Cumene trans-alkylation production process flow diagram [21]	13
Figure 2.7: Cumene two-flash energy-integrated production process flow diagram [21]	
Figure 2.8: Cumene dividing-wall column production process' flow diagram [21]	16
Figure 2.9: Cumene RD production process flow diagram [21]	17
Figure 2.10: Cumene double-effect production process flow diagram [21]	19
Figure 2.11: Schematic diagram for reactive distillation [40]	20
Figure 2.12: Typical Process Flow Sheet [38]	21
Figure 2.13: Reactive Distillation [49]	22
Figure 3.1: Composite Curve [74]	31
Figure 3.2: Grand Composite Curve [76]	32
Figure 3.3: Techniques used in Process Intensification [79]	33
Figure 3.4: Steps for new optimization approach	37
Figure 4.1: Turton's design flow sheet [23]	38
Figure 4.2: The Current HEN	43
Figure 4.3: A schematic diagram for reactive distillation process for Cumene production [24]] 44
Figure 5.1: Conventional Process Simulation Model	46
Figure 5.2: First Modified HEN	
Figure 5.3: Second Modified HEN	53
Figure 5.4: Third Modified HEN	55
Figure 5.5: New HEN design	57
Figure 5.6: Reactive Distillation Simulation Model	59