

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

DETECTING AND LOCATING WINDING FAULTS IN POWER TRANSFORMERS

By

Mohamed Youssef Abd-Al-Glil Youssef Allam

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

DETECTING AND LOCATING WINDING **FAULTS IN POWER TRANSFORMER**

By

Mohamed Youssef Abd-Al-Glil Youssef Allam

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Doaa Khalil Ibrahim

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

Associate Prof. Dr. Aboul'Fotouh Abdelrheem Mohammed

Electrical Power and Machines Department, Higher Institute of Engineering, El Shorouk Academy, Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

DETECTING AND LOCATING WINDING FAULTS IN POWER TRANSFORMERS

By

Mohamed Youssef Abd-Al-Glil Youssef Allam

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:		
Prof. Dr. Mahmoud Ibrahim Gilany	Thesis Main Advisor	
Prof. Dr. Doaa Khalil Ibrahim	Advisor	
Prof. Dr. Samia Mohamed El-Hakim	Internal Examiner	
Prof. Dr. Mahmoud Magdy Bahgat Eteiba	— E 4 JE •	
Faculty of Enginnering, Fayoum University	External Examiner	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2020

Engineers Name: Mohamed Youssef Abd-Al-Glil Youssef Allam

Date of Birth: 1 / 1 / 1993
Nationality: Egyptian

E-mail: mohammedyoussefallam@gmail.com

Phone: +201028540868

Address: El Shorouk City, Cairo, Egypt

Registration Date: 01/10/2015 Awarding Date: //2020

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Mahmoud Ibrahim Gilany (Thesis main advisor)

Prof. Dr. Doaa Khalil Ibrahim (Advisor)

Associate Prof. Dr. Aboul'Fotouh Abdelrheem Mohammed

Examiners:

Prof. Dr. Mahmoud Ibrahim Gilany (Thesis main advisor)

Prof. Dr. Doaa Khalil Ibrahim (Advisor)

Prof. Dr. Samia Mohamed El-Hakim (Internal Examiner)

Prof. Dr. Mahmoud Magdy Bahgat Eteiba (Fayoum University)

Title of Thesis:

Detecting and Locating Winding Faults in Power Transformers

Key Words:

Artificial Neural Network (ANN), Identification and location of faults, Power transformers, Winding faults.

Summary:

Power transformers are essential elements in power systems and thus their protection schemes have critical importance. In this thesis, an online scheme is developed to observe the operating conditions of the connected transformer to assess the internal fault conditions. The proposed scheme depends on the relation (ΔV - I_{in}) which has the ellipse locus. According to the type of the fault, the ellipse dimensions vary and the scheme can effectively extract new features in order to classify and locate the deformation inside the transformer.

Two proposed approaches are developed and applied to deal with internal insulation failure problems within power transformer windings. The first approach is applied to classify five different internal insulation faults: inter disk, series short circuit and shunt short circuit, by applying artificial neural network with a reasonable accuracy. The second approach aims to find the exact location of the three types of internal faults along the transformer winding by dividing the transformer winding into sections.

Finally, the superiority of the proposed scheme to accurately discriminate and locate the power transformer internal faults is extensively examined by comparing its performance with some published schemes. Thus, it is concluded that it can be applied as a useful tool for condition assessment of transformers enabling power management system to spot the ones requiring immediate periodic maintenance or exchange without supply interruption.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference sections.

Name: Mohamed Youssef Abd-Al-Glil Youssef Allam

Date: / / 2020 Signature:

ACKNOWLEDGMENTS

First of all, thanks to Allah who supported and strengthened me in all of my life and in completing my studies for the Master of Science (M.Sc.) degree.

I would like deeply to express my thanks and gratitude to my supervisors; Prof. Dr. Mahmoud Gilany and Prof. Dr. Doaa Khalil Ibrahim, Electrical Power Engineering Department, Faculty of Engineering, Cairo University for their faithful supervision, enormous efforts, and their great patience during the period of the research.

I would like to thank my father, my mother and my brothers for their great inspiration, kind support, and continuous encouragement.

Finally, there are no enough words to thank my wife Eng. Amani Mohammed for her support.

Thank you all.

TABLE OF CONTENTS

DISCL	AIMER	i
ACKN	OWLEDGMENTS	ii
TABLI	E OF CONTENTS	iii
LIST (OF TABLES	v
LIST (OF FIGURES	vi
	OF SYMBOLS AND ABBREVIATIONS	
	RACT	
		2411
СНАР'	TER 1: INTRODUCTION	1
1.1	Overview	
1.2	Problem Statement	
1.3	Thesis Objectives	
1.4	Thesis Contributions	
1.5	Thesis Outlines	3
CHAP'	TER 2: POWER TRANSFORMERS OVERVIEW	5
2.1	Introduction to Power Transformers	5
2.2	Construction & Operation of Transformers	6
2.3	Power Transformer Failure	8
2.4	Causes of Transformer Failure	8
CHAP'	TER 3: LITERATURE REVIEW ON TRANSFO	RMERS
MONI	TORING METHODS AND MODELLING	11
3.1 Li	iterature Review of Internal Fault Monitoring Methods in Transformers	11
3	3.1.1 Methods based on Current/Voltage	11
3	3.1.2 Methods based on Frequency	13
3	3.1.3 Methods based on Flux	16
	3.1.3.1 Leakage flux-based Methods	17
	3.1.3.2 Core flux–based methods	17
	3.1.3.3 Transformation action–based method	18
3	3.1.4 Comparison between Earlier Methods	20
3.2 Fa	ault Detection Approaches	20
3	3.2.1 Transformer Diagnosis using Analytical Models	21
3	3.2.2 Transformer Diagnosis Using Artificial Intelligence	22
3.3 Pc	ower Transformer Winding Modeling	22
3	3.3.1 Calculation of Capacitances Directly and Inductances Through V	
	Propagation	23

3.3.2 Calculating Inductances and Capacitances Through Velocity of Propagation	25
CHAPTER 4: MODELING & SIMULATION RESULTS	26
4.1 Methodology for the Proposed Diagnostic Technique	26
4.2 Applied Transformer Model	
4.3 Simulation Process	31
4.4 Simulation Results	33
4.4.1 Simulating of Healthy Condition	33
4.4.2 Simulating of Abnormal Conditions	36
4.4.2.1 Simulation of Inter Disk Fault (IDF)	37
4.4.2.2 Simulation of Series Short Circuit (SEF)	39
4.4.2.3 Simulation of Shunt Short Circuit Fault (SHF)	41
4.5 Discrimination between Different Internal Faults	43
4.5.1 Visual Discrimination of internal faults	43
4.5.2 Features Extraction Discrimination technique	45
4.5.2.1.1 General Ellipse Parameter Features	46
4.5.3 Novel Features Extracted from Locus	51
5.1 Artificial Neural Networks Principles	
-	
5.1.1 ANN Characteristics and Classification	
5.1.2 Learn Vector Quantization (LVQ)	
5.2 Applied ANN Fault Identification	
5.2.1 Results of Applied ANN Fault Identification	
5.3 Applied ANN Fault Location	
5.4 Proposed Identification Technique with Harmonics	
5.5 Normal Operation at rated Insulation Voltage	13
CHAPTER 6: CONCLUSIONS AND FUTURE WORK	76
6.1 Conclusion	76
6.2 Main Features and Limitations of the Proposed Scheme	77
6.3 Future Work	77
REFERENCES	78
ملخص الرسالة	

LIST OF TABLES

Table 2.1: Thermal faults categories	9
Table 2.2: Causes of transformer failure	9
Table 2.3: Various power transformers' faults location	10
Table 2.4: Transformer component failures	10
Table 3.1: Offline and online current/voltage-based method comparison fo	r internal
faults detection	14
Table 3.2: FRA features for various faults approach in power transformers	16
Table 3.3: Flux-based method for internal fault detection and localization	on inside
power transformers	19
Table 3.4: Different phenomenon on various methods accuracy levels	20
Table 4.1: Model parameters and the faults which impact them	31
Table 4.2: Detailed parameters of 3, 5 and 7 MVA power transformers [56]	31
Table 4.3: Simulated internal faults in power transformers	37
Table 4.4: Internal faults visual discrimination	45
Table 4.5: General ellipse features for transformer healthy condition	48
Table 4.6: Four required points to get the five proposed extracted features	52
Table 5.1: Classification of ANNs	59
Table 5.2: Overall fault identification results	63
Table 5.3: Sections describe transformer disks distribution	63
Table 5.4: Inter Disk fault location results	66
Table 5.5 : Series Short Circuit fault location results	66
Table 5.6: Shunt Short Circuit fault location results	67
Table 5.7: Overall fault location results	67
Table 5.8: Voltage distortion limits as per IEEE 519-2014	67

LIST OF FIGURES

Figure 1.1: Flowchart of thesis work steps
Figure 3.1: Flux behavior in healthy and faulty conditions [42]
Figure 3.2: Concentric cylinder turn model
Figure 3.3: Ring winding used for direct inductance calculation
Figure 4.1: Graphical illustration of ΔV - I_{in} relationship
Figure 4.2: (a) Transformer equivalent circuit as per unit
Figure 4.3: The relation between x and y for $B12 - 4$ A1C1 < 0
Figure 4.4: Equivalent circuit of the transformer winding
Figure 4.5: The applied model structure
Figure 4.6: (ΔV - I_{in}) locus of 3 MVA, 33/11 kV transformer in healthy condition 33
Figure 4.7: (ΔV - I_{in}) locus of 5 MVA, 33/11 kV transformer in healthy condition 34
Figure 4.8: (ΔV - I_{in}) locus of 7 MVA, 20 / 6 kV transformer in healthy condition 34
Figure 4.9: Power factor effect on (ΔV - $I_{in})$ locus of 7 MVA, 20 / 6 kV transformer 36
Figure 4.10: Effect of inter-disk faults (IDF) on (ΔV - I_{in}) locus for 3 MVA37
Figure 4.11: Effect of inter-disk faults (IDF) on (ΔV - I_{in}) locus for 5 MVA38
Figure 4.12: Effect of inter-disk faults (IDF) on (ΔV - I_{in}) locus for 7 MVA38
Figure 4.13: SEF simulation for one disk
Figure 4.14: Effect of series short circuit faults (SEF) on (ΔV - I_{in}) locus for 3 MVA
39
Figure 4.15: Effect of series short circuit faults (SEF) on (ΔV - I_{in}) locus for 5 MVA
40
Figure 4.16: Effect of series short circuit faults (SEF) on (ΔV - $I_{in})$ locus for 7 MVA
40
Figure 4.17: SHF simulation for one disk
Figure 4.18: Effect of shunt short circuit fault (SHF) on (ΔV - I_{in}) locus for 3 MVA 41
Figure 4.19: Effect of shunt short circuit fault (SHF) on (ΔV - I_{in}) locus for 5 MVA 42
Figure 4.20 : Effect of shunt short circuit fault (SHF) on (ΔV - I_{in}) locus for 7 MVA42
Figure 4.21: Effect of the three internal faults located at disk No. 44 on (ΔV - $I_{\rm in})$
locus for 3 MVA power transformer43
Figure 4.22: Effect of the three internal faults located at disk No. 34 on (ΔV - I_{in})
locus for 5 MVA power transformer44

Figure 4.23:	Effect of the three internal faults located at disk No. 34 on (ΔV - I_{in})
	locus for 7 MVA power transformer
Figure 4.24:	General ellipse shape46
Figure 4.25:	Semi major length (A) variation versus number of faulty disks for all
	fault types in 3 MVA power transformer
Figure 4.26:	Minor length (B) variation versus number of faulty disks for all fault
	types in 3 MVA power transformer
Figure 4.27:	Axis rotation angle (θ) variation versus number of faulty disks for all
	fault types in 3 MVA power transformer50
Figure 4.28	Locus area (Aellipse) variation versus number of faulty disks for all fault
	types in 3 MVA power transformer50
Figure 4.29:	Four required points on $(\Delta V\text{-}I_{in})$ locus to get the five proposed extracted
	features51
Figure 4.30:	First feature (F1) variation versus number of faulty disks for all fault
	types for 3 MVA transformer53
Figure 4.31:	Second feature (F2) variation versus number of faulty disks for all fault
	types for 3 MVA transformer53
Figure 4.32:	Third feature (F3) variation versus number of faulty disks for all fault
	types for 3 MVA transformer
Figure 4.33:	Fourth feature (F4) variation versus number of faulty disks for all fault
	types for 3 MVA transformer
Figure 4.34:	Fifth feature (F5) variation versus number of faulty disks for all fault
	types for 3 MVA transformer
Figure 4.35:	The five features (F1:F5) variation versus number of faulty disks for all
	fault types for 5 MVA transformer
Figure 4.36:	Total data set matrix for each type of fault in case of 3 MVA with 89
	disks57
Figure 5.1: L	VQ neural network structure59
Figure 5.2: L	VQ neural network model60
Figure 5.3: C	General flowchart that describes the fault classification
Figure 5.4: F	Flowchart of faults identification and location algorithms65
Figure 5.5: 3	rd order harmonic effect on (ΔV - I_{in}) locus for at healthy condition 68
Figure 5.6 : 3	3^{rd} order harmonic effect on (ΔV - I_{in}) locus for 3 MVA power transformer
	for IDF with 10 faulty disks69

Figure 5.7: 3rd order harmonic effect on (ΔV - I_{in}) locus for 3 MVA power transformer
for SEF with 15 faulty disks70
Figure 5.8: 3rd order harmonic effect on (ΔV - I_{in}) locus for 3 MVA power transformer
for SHF with 20 faulty disks71
Figure 5.9: 5th order harmonic effect on (ΔV - I_{in}) locus for 3 MVA power transformer
at normal condition
Figure 5.10: 7th order harmonic effect on (ΔV - I_{in}) locus for 3 MVA power
transformer at normal condition
Figure 5.11: (ΔV - I_{in}) locus for 3 MVA power transformer at rated voltage73
Figure 5.12: (ΔV - I_{in}) locus for 5 MVA power transformer at rated voltage74
Figure 5.13: (ΔV - I_{in}) locus for 7 MVA power transformer at rated voltage74