

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

PREDICTION OF URBAN GROWTH BASED ON ACCESSIBILITY USING GIS \ CA INTEGRATED APPROACH

By

Ahmed Rabie Mohamed Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architectural Engineering

PREDICTION OF URBAN GROWTH BASED ON ACCESSIBILITY USING GIS \ CA INTEGRATED APPROACH

By

Ahmed Rabie Mohamed Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architectural Engineering

Under the Supervision of

Prof. Dr. Mohamed M. El-Barmelgy

Professor of Urban Planning, Former Head of Architectural Engineering Department Faculty of Engineering, Cairo University

PREDICTION OF URBAN GROWTH BASED ON ACCESSIBILITY USING GIS \ CA INTEGRATED APPROACH

By

Ahmed Rabie Mohamed Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Architectural Engineering

Prof. Dr. Mohamed M. El-Barmelgy, Thesis Main Advisor

Prof. Dr. Ahmed Salah El-Din Ouf, Internal Examiner

Prof. Dr. Magda Ekram Ebeid, External Examiner

Professor of Architecture - Ain Shams University, Dean of Obour High Institute of Engineering and Technology.

FACULTY OF ENGINEERING , CAIRO UNIVERSITY
GIZA, EGYPT
2020

Engineer's Name: Ahmed Rabie Mohamed Hamed

Date of Birth: 17/9/1989 **Nationality:** Egyptian

E-mail: ahmed.rabie.m@gmail.com

Phone: (+2)01111808207

Address: 16 Om El-Masreen Sq., Giza, Egypt

Registration Date: 1/10/2014 **Awarding Date:** / /2020

Degree: Master of Science

Department: Architectural Engineering

Supervisors:

Prof. Mohamed M. El-Barmelgy

Examiners:

Prof. Mohamed M. El-Barmelgy (Thesis main advisor)
Prof. Ahmed Salah El-Din Ouf (Internal examiner)
Prof. Magda Ekram Ebeid (External examiner)
Professor of Architecture - Ain Shams University, Dean of Obour High Institute of Engineering and Technology.

Title of Thesis:

Prediction Of Urban Growth Based On Accessibility Using GIS \ CA Integrated Approach

Key Words:

Urban Growth; Urban Simulation; Roads/Transportation Network; Geographic Information Systems (*GIS*); Cellular Automata (*CA*).

Summary:

Recently, less developed countries (*LDC*s) witnessed unprecedented rapid spontaneous urban growth rate coupled with fast population growth, leading to: distort the national strategic plans, more fiscal burden, inadequate urban planning intervenes, irrelevant urban policies, threaten the sate-strategic crops, pollution, traffic congestion, informality notion, high population densities...*etc*.

Although, developed countries (DCs) face similar issues but handle differently, as modern technologies of computing are heavily integrated into urban planning process. Thus, the thesis suggests integrated approach Modeler (LCM) using *IDRISI*: Land Change with Geographic Information System (GIS) to simulate the current urban growth status and hence predict its future growth (2050) with emphases on accessibility to existing urban areas and\or accessibility to roads network as two driving variables of urban growth in the case study.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:	/	/
Signature:			

Dedication

Dedicate more than 7500 hours (= about 313 days distributed over five years) of continued dedicated hard work in preparing this thesis to every science seeker, to all my family members particularly to my mother "Ragaa Mahran" and the two older siblings "Mohamed" and "Asmaa", these persons who believed in me, and always supports my back since the childhood so far, beside my beloved sister "Hoda" and my father.

To all my everywhere teachers since KG to the master degree, as i am a humble result of your great work.

To all postgraduate studies administration members in the faculty, particularly "*Hala Ibrahim*", it will never be done without your hard work and the real desire to solve all possible problems to all the students.

Last but not least to all my friends, neighbours and acquaintances simply you learned me alto.

Acknowledgments

It is no exaggeration to say it was my dream to wok under the supervision of both *Prof. Mohamed El Barmelgy* and *Dr. Ibrahim Badwi*, definitely not exaggeration as both are giants in urban simulation field and had countless contributions conducting this field.

Moreover, during the thesis preparation, they both encouraged me to discover and learn more without external stress, provided me with endless resources, efforts, technical support, further life advices and sense of humour in many times.

This work will never be done without you, so thank you and *GOD* blessing you and all your family "Jazakum Allah Khair".

Table of Contents

Li	List of Tables			ii	
Li	st of l	Figures		iii	
A	cknow	ledgem	nents	iv	
De	edicat	ion		v	
Al	bstrac	t		vi	
1					
	1.1	Introdu	action	1	
	1.2	Thesis	Objectives	9	
	1.3	Thesis	Questions	10	
	1.4	Thesis	Methodology	10	
	1.5	Thesis	Structure	11	
2	Revi	iew His	torical Spatial Allocation Theories Based On Accessibility	15	
	2.1	Urban	Growth Based On Accessibility To Urban	15	
		2.1.1	Spatial Cycle Theory (SCT)[85], [84]	16	
		2.1.2	Core-Periphery Theory[83]	17	
	2.2	2.2 Urban Growth Based On Accessibility To Roads			
		2.2.1	Christaller Central Place Theory[8],[78]	19	
		2.2.2	Von Thunen Model[57]	25	
		2.2.3	Multiple Nuclei Model[78]	29	
	2.3	Compl	exity Theory Approach[98]	31	
		2.3.1	Theory Of Complexity-Economics	35	

	2.3	Summ	ary	37
3	Eval	he Existing Urban Models	39	
	3.1	Aggre	gate Cellular Automation Models (CA)	41
		3.1.1	IDRISI: Land Change Modeler (<i>LCM</i>)	42
		3.1.2	IDRISI: GeoMod	58
	3.2	.2 Disaggregate Agent-Based Model (ABM)		
		3.2.1	Agent Notion	69
		3.2.2	Agent Rules, Behaviour, Relationships And Environments	71
		3.2.3	Construct An Agent-Based Model	72
		3.2.4	Applications Of Agent-Based Models	74
			3.2.4.1 SWARM	74
			3.2.4.2 MASON\GEOMASON	78
	3.3	.3 Microsimulation Models (MSM)		
	3.4	Common Satellites Resources		
	3.5	Summary		
4	Con	ıparativ	ve Analysis For Domestic, Regional And Global Experiments	89
	4.1	Greate	er Cairo Metropolitan Area, Egypt[32]	89
		4.1.1	Methods And Tools In-use	91
		4.1.2	Deducting Driving Factors	94
	4.2	Qazvir	n Province, Iran[12]	95
		4.2.1	Methods And Tools In-use	96
		4.2.2	Deducting Driving Factors	96
	4.3	Hang	Jia-Hu Plain, Zhengjiang Province, China[93]	98
		4.3.1	Methods And Tools In-use	99
		4.3.2	Deducting Driving Factors	104
	4.4	Summary		

5	Prep	oare Th	e Fundan	nental Databases For The Proposed Workflow	109
	5.1	The Pi	roposed W	Yorkflow Data Preparation	. 109
		5.1.1	Descript	ion Of The Case Study	. 109
		5.1.2	The Imp	ortance Of The Selected Case Study	. 113
		5.1.3	LandSat	Images Preparation	. 115
		5.1.4	Landsat	Images Conversion (Vector To Raster Maps)	. 122
		5.1.5	Prepare	Input Maps For <i>IDRISI</i>	. 125
	5.2	The proposed workflow Calibration Process			
		5.2.1	The Prop	posed workflow Calibration Results	. 131
			5.2.1.1	Change Analysis Results	. 131
			5.2.1.2	Modelling Transition Potential Sub-models Results	. 134
			5.2.1.3	The <i>Proposed workflow</i> Optimization To Adopt <i>Egyptian</i> Context	. 137
	5.3	The Pi	roposed W	Yorkflow Validation Process	. 144
		5.3.1	Data Pre	eparation To Predict Urban Growth Scenarios	. 144
		5.3.2	IDRISI:	LCM Outputs Validation	. 151
			5.3.2.1	Validation Based On Visual Interpretation	. 151
			5.3.2.2	Validation Based On Areas Comparison	. 156
			5.3.2.3	Validation Based On <i>IDRISI</i>	. 156
			5.3.2.4	Validation Based On IDRISI Relative Operation Characteristic (ROC) Module	. 159
	5.4	Summ	ary		. 161
6	Run	The Pi	oposed W	Yorkflow To Predict The Year 2050	163
	6.1	6.1 Apply <i>The proposed workflow</i> To Predict 2050			. 163
		6.1.1	Prepare '	The Required Inputs To Predict 2050	. 163
		6.1.2	Reveal U	Jrban Growth Prediction For The Year 2050	. 165
		6.1.3	Discussi	on On The Prediction Of The Year 2050	171

	6.2 Evaluation The Results Based On <i>EPA</i> Criteria			
		6.2.1	EPA: Model Relevancy	177
		6.2.2	EPA: Model Resources	177
		6.2.3	EPA: Model Support	178
		6.2.4	EPA: Model Technical Expertise	179
		6.2.5	EPA: Model Data Requirements	180
		6.2.6	EPA: Model Accuracy	180
		6.2.7	EPA: Model Resolution	181
		6.2.8	EPA: Model Temporal Capabilities	181
		6.2.9	EPA: Model Versatility	182
		6.2.10	EPA: Model Linkage Potential	182
		6.2.11	EPA: Model Public Accessibility	182
		6.2.12	EPA: Model Transferability	183
	6.3	Limita	tions Of The Proposed workflow	184
		6.3.1	IDRISI: LCM Limitations As A CA-based Dynamic Model	184
		6.3.2	IDRISI: LCM Limitations In The Case Study Context	184
	6.4	Summa	ary	186
7	The	sis Conc	clusion And Further Researches	187
	7.1	Thesis	Conclusion	188
	7.2	Thesis	Recommendations	189
	7.3	Further	r Researches	190
Re	eferen	ices		191
Aį	pend	lix A A	ppendix	198

List of Tables

1.1	Ministry of Agriculture and Land Reclamation, acquisition date between: 25/1/2011 to 2/7/2018	6
3.1	The training interval for the selected study area $(inkm^2)$ from 1992 to 2001. Source: [58]	55
3.2	The transition probability matrix for the selected study area from 1992 to 2001. Source: [58]	56
3.3	Comparative analysis between <i>CA</i> models (<i>IDRISI: LCM, GeoMod</i>) and <i>ABM</i> models (<i>SWARM, MASON\GEOMASON</i>). Source: researcher work	82
3.4	(Continued) comparative analysis between <i>CA</i> models (<i>IDRISI: LCM</i> , <i>GeoMod</i>) and <i>ABM</i> models (<i>SWARM</i> , <i>MASON</i> \ <i>GEOMASON</i>). Source: researcher work	83
3.5	Comparative analysis of each urban model <i>advantage</i> according to <i>Michael Batty Classification</i> . Source: researcher work	85
3.6	Comparative analysis of each urban model <i>limitation</i> according to <i>Michael Batty Classification</i> . Source: researcher work	86
4.1	Indicating changes in each buffer zone during the first period (between 1990 to 2003) for the <i>GCMA</i> study area. Source: [32]	94
4.2	Indicating changes in each buffer zone during the second period (between 2003 to 2005) for the <i>GCMA</i> study area. Source: [32]	94
4.3	Changes from <i>Agriculture</i> to <i>Built-up</i> (from 1990 to 2003) in the <i>GCMA</i> study area. Source:[32]	95
4.4	Changes from <i>Agriculture</i> to <i>Built-up</i> (from 2003 to 2005) in the <i>GCMA</i> study area. Source:[32]	95
4.5	Converted areas matrix (<i>hectare</i>) for the <i>Qazvin</i> province between (1990-2010). Source:[12]	97
4.6	The agricultural land use conversion between 1990 and 2010 based on distance from roads network (<i>Pixel</i>). Source:[12]	97
4.7	Landscape Metrics and their ecological characteristics. Source:[93]	100
4.8	Highway density between 1990 and 2010 for the <i>Hang-Jia-Hu Plain</i> . Source:[93]	101