

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

B18313

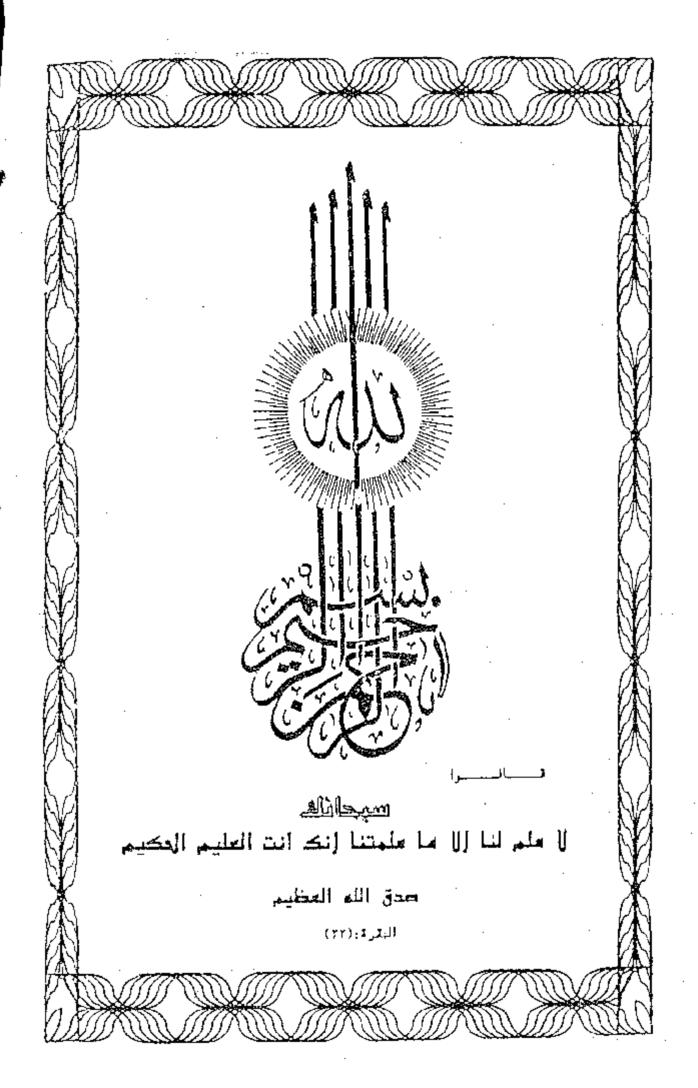
STUDIES ON THE COMPARATIVE EFFICIENCY OF SOME RECLAMATION MATERIALS FOR THE SODIC SOIL

BY

Fekry Abdel Monaim Farag Moustafa

B.Sc. Agric. (Soil Science), Ain Shams University (1977)

A Thesis


Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science (in soil scince)

Department of Soils and Agricultural Chemistry Faculty of Agriculture, Moshtohor,

Zagazig University

(Benha Branch)

APPROVAL SHEET

Title : Studies on the comparative efficiency of some

reclamation materials for the sodic soil

Name : Fekry Abdel Monaim Farag Moustafa

This Thesis for Master of Science degree has been approved by:

Proj. Dr. A. H. Ibrohm

Prof. Dr. 🛮 🕹

Prof. Dr. H. H. Abbas

Committee in charge

Date: / / 2000

ACKNOWLEDGEMENT

The author wishes to express his appreciation and deep sincere gratitude to Prof. Dr. A.A. Abdel Salam, prof., of Soil Science, Faculty of Agriculture, Moshtohor, Zagazig University and Dr. O. El-Housseini, Lecturer of Soil Science, Faculty of Agriculture, Moshtohor, Zagazig University for their help, encouragement and supervision.

Thanks are also due to **Dr. S.A.A. El-Raies**, Assoc. Prof. of Soil Science Soil, Water and Environment Research Institute, Agriculture Research Center and **Dr. M. A. Abu-Sinna**, Assoc. Prof. of Soil Science Soil in the same Institute, for their help throughout this work. Also, thanks are also due to **Dr. F. H. Mohamed**, lecturer of Agricultural Economics, Economic Research Institute, Agriculture Research Center for his help concerning the statistical analysis of data. The author wishes to thank **Mr. O. Morssy** the owner of the land for using his land for carrying out this work.

The author is indebted to his wife for her encouragement and help during the pursuit of this work.

CONTENTS

		Page
1-	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2-1. Saline and sodic soils	3
	2-1-1 Properties	3
	I- Saline soils	3
	II- Saline sodic soils (Saline-Alkali soils)	4
	III- Non Saline sodic soils (Non saline-Alkali soils)	4
	2-1-2. Problems of sodic soils (alkali soils)	. 5
	2-2. Reclamation of sodic soils	5
	2-2-1. Chemical amendments for reclamation of sodic soils	6
	2-2-1-1. Gypsum as an amendment for reclaiming sodic soil	6
	A- Calculation of gypsum requirements	7
	B- Gypsum dissolution process	9
	C- Effect of gypsum application on soil physical properties	9
	D- Effect of gypsum application on soil chemical properties	11
	E- Gypsum application and plant growth	13
	2-2-1-2. Sulphur application	14
	A- Sulphur oxidation	14
	B- Sulphur reduction	15
	2-2-1-3, Calcium carbonate (Lime)	16
	2-2-1-4. Organic manure and improvement of soils	17
	2-2-1-5. Acids and acid formers for reclaiming sodic soils	20
	2-2-1-6. Application of mixtures or combinations of soil amendments	22
	2-2-1-7. Choice and the efficiency of different chemical	
	amendments	23
3-	MATERIALS AND METHODS	26
	3-1. Location of experiment	26
	3-2. Calculation of GR (Gypsum requirements) for the soil under study.	26
	3-3. Field experiment	26
	3-3-1. Form of amendment	. 28
	3-3-2. Rate of application of amendment	28
	3-3-3. Method of application of amendment	28

		Page
	3-4. Chemical analysis of irrigation water used for reclamation	29
	3-5. Physical and chemical properties of the soil of the experiment	29
	3-6. Stages of experiment	32
	3-6-1. Reclamation stage	32
	3-6-2. Cultivation stage	32
	3.7. Soil physical and chemical analyses	33
4 -	RESULTS AND DISCUSSION	48
	4-1. Reclamation leaching of soil and improvement in soil salinity, sodicity, and other chemical properties	48
	4-1-1. Effect on soil salinity	49
	4-1-2. Effect on soil pH	50
	4-1-3. Effect on sodium adsorption ratio (SAR) of soil water	52
	4-1-4. Effect on exchangeable sodium percent (ESP)	54
	4-1-5. Effect on soluble ions	57
	A- Effect on soluble calcium	57
	B Effect on soluble magnesium	59
	C- Effect on soluble sodium	61
	D- Effect on soluble potassium	63
	E- Effect on soluble bicarbonate	64
	F- Effect on soluble chloride	65
	G- Effect on soluble sulphate	67
	.4-2. Cultivation of the reclaimed soil and evaluating its productivity of	
	rice crop:	68
•	4-2-1. Rice grain yield	68
	4-2-2. Rice straw yield	69
	4-2-3. Rice total (grain + straw) yield	69
5-	GENERAL CONCLUSIONS AND PRACTICAL IMPLICATIONS	110
	5-1. Quality of water used in the study	110
	5-2. Reclamation by leaching with or without amendment and salinity reduction	110
	5-3. Reclamation and soil sodicity reduction	111
	5-3-1. Soil sodicity in relation to sodicity of the irrigation water used	
	for leaching	111

		Page
	5-3-2. Soil sodicity in relation to the SAR of soil water	111
	5-4. Comparative efficiency of amendments	112
	5-4-1. Amendments and soil salinity	112
	5-4-2, Amendments and soil socicity	112
	5-4-3. Obtained ESP after leaching in comparison to the ESP _f used	
	to calculate gypsum requirement	113
	5-5. Performance of rice crop grown after reclamation	113
	5-6. The practical implications	114
6-	SUMMARY	116
7-	REFERENCES	118
	ARABIC SUMMARY	

in Sir

LIST OF TABLES

No.		Page
1	Chemical analysis of leaching water	30
2	Physical and chemical properties of the soil of the experiment	31
3	Salinity (expressed as EC "dSm ⁻¹ ") in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	71
4	Salinity (expressed as EC "dSm 1") in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	72
5	Soil pH in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	74
6	Soil pH in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	75
7	Sodium adsorption ratio (SAR) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	77
. 8	Sodium adsorption ratio (SAR) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	78
9	Exchangeable sodium percentage (ESP) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	80
10	Exchangeable sodium percentage (ESP) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	81
11	Soluble Ca ⁺⁺ (me L ⁻¹) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	83
12	Soluble Ca ^{**} (me L ^{-*}) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	84
13	Soluble Mg** (me L*1) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	86
14	Soluble Mg ⁺⁺ (me L ⁻¹) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application.	. 87

		Page
15	Soluble Na ⁺ (me L ⁻¹) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	89
16	Soluble Na ⁺ (me L ⁻¹) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	90 .
17	Soluble K* (me L ⁻¹) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	92
18	Soluble K ⁺ (me L ⁻¹) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	93
19	Soluble HCO ₃ (me L ⁻¹) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	95
20	Soluble HCO ₃ * (me L ⁻¹) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	96
21	Soluble CL' (me L ^{-t}) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	98
22	Soluble CL* (me L**) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	99
23	Soluble SO ₄ " (me L ⁻¹) in topsoil (0-15 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	10 1
24	Soluble SO ₄ st (me L st) in subsoil (15-30 cm) after reclamation by leaching a saline sodic soil using different amendments and methods of application	102
25	Grain yield of rice (ton/fed.) as effected by leaching a saline sodic soil using different amendments and methods of application	104
26	Straw yield of rice (ton/fed.) as effected by leaching a saline sodic soil using different amendments and methods of application	106
27	(Grains + straw) yield of rice (ton/fed.) as effected by leaching a saline sodic soil using different amendments and methods of application	108
	· · · · · · · · · · · · · · · · · · ·	

LIST OF FIGURES

Fig. No.		Page
1	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, time or manured lime: Effect on soil salinity (expressed as EC of soil saluration extract)	73
2	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured time: Effect on soil pH (of soil saturation extract)	76
3	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on sodium adsorption ratio (SAR)	79
4	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on exchangeable sodium percentage (ESP)	82
5	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on soluble Ca ⁺⁺ (me L ⁻¹) of soil saturation extract	95
6	Reciamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured time: Effect on soluble Mg** (me L**) of soil saturation extract	85 88
7	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on soluble Na* (me L*1) of soil saturation extract	91
8	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, time or manured lime: Effect on soluble K* (me L-1) of soil saturation extract	94
9	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on soluble HCO ₃ (me L ⁻¹) of soil saturation extract	
10	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, time or manured time: Effect on soluble Cf (me L 1) of soil saturation extract	
11	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on soluble SO_4^{\pm} (me L ⁻¹) of soil saturation extract	100
12	Reclamation leaching of a saline sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on grain yield	105
13	Reclamation leaching of a satine sodic soil by applying gypsum, sulphur, lime or manured lime: Effect on straw yield	107
14	Reclamation leaching of a saline sodic soil by applying gypsum,	- 109