

Mona maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Mona maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Mona maghraby

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

BINITE

GEOPHYSICAL STUDIES OF THE NORTHERN PART OF SUEZ GULF AND MATHEMATICAL MODELLING OF THE PREVAILING PARAMETERS

THESIS Presented By

SAMIRA ABD EL-KAWY MOHAMED HUSSIEN

B.Sc. Physics 1975 Diploma In Geophysics 1977 M.Sc. Geophysics 1987

FOR

The Degree of Doctor of Philosophy of Science (Marine Geophysics)

Physics Department Faculty of Science Alexandria University

SUPERVISED By

(Late) Prof.Dr. Abbas F. El-Saharty Prof. of Geophysics Faculty of Science, Alexandria University

Prof.Dr. Morad B. Awad Prof. of Marine Geophysics Head of Geology and Marine Geophysics Department National Institute of Oceanography & Fisheries, Alexandria Prof.Dr. Mohamed El-Raey Prof. of Environmental Physics, Vice Dean, Institute of Graduate Studies & Research Alexandria University

Prof.Dr. Yakout I. El-Abd Prof. of Geophysics Faculty of Science, Alexandria University.

Dr. Ismail S. Sabbah Lecturer of Physics Faculty of Science Alexandria University

ACKNOWLEDGEMENT

The author sincerely expresses her profound gratitudes to the spirit of Late Dr. ABBAS F. EL-SAHARTY Prof. of Geophysics, Physics Department Alexandria University, for the selection of the point of research and faithful guidance.

Dr. MOHAMED EL-RAEY Prof. of Environmental Physics and Vice Dean of Institute of Gradute Studies and Research, Alexandria University, is gratefully acknowledged for his continuous supervision, his sympathetic encouragement, valuable discussions and reading throughout the entire work.

I wish also to express my gratitudes and deep thanks to Dr.

MORAD B. AWAD, Prof. of Marine Geophysics, Head of Department of
Marine Geology and Geophysics, National Institute of Oceanography and
Fisheries, Alexandria, for sharing in selection of the point of research,
providing the geophysical data and continuous supervision, and whose
restless efforts during all stages of preparation of this thesis, made this
work a success.

The author is deeply indepted to Dr. YAKOUT I. AL-ABD, Prof. of Geophysics, Department of Physics, Faculty of Science, Alexandria University, for his supervision, constructive discussions, reading and revision through various stages of preparation of this work.

I wish also to extend my deep thanks to Dr. ISMAIL S. SABBAH,
Lecturer of Physics, Faculty of Science, Alexandria University, for his
encouragment, supervision and suggestions in the treatment of gravity
data through modelling studies.

The author wishes to express her deep thanks to the **Head and**Staff Members of Physics Department, Faculty of Science, Alexandria

University, for their help and encouragment.

I wish to express my deep thanks to The Staff Members of Remote Sensing Laboratory, Institute of Graduate studies and Research, Alexandria University, for their helpful aids and their kind cooperation.

I wish also to express my deep thanks to **The Director and Staff**Members of National Institute of Oceanography and Fisheries, Alexandria,
for providing facilities to complete this work.

CONTENTS

rage
CHAPTER I. INTRODUTION
I.1. Aim Of The Work
I.2. Location And General View About The Area 2
I.3. The Available Data 4
I.3.a. Bouguer Gravity Map 4
I.3.b. Aeromagnetic Map 5
I.3.c. Geoseismic Sections
I.3.d. Landsat Image 7
I.4. Previous Work 8
I.5. Geology Of The Study Area
I.5.a. Stratigraphy
I.5.b. Structural setting and tectonics21
I.6. Survey Of The Thesis21
CHAPTER II. ADOPTED TECHNIQUES FOR PROCESSING AND STUDYING
THE GRAVITY AND MAGNETIC DATA OF THE STUDY AREA32
II.1. Basic Principle of the Gravity Method32
II.1.a. Review of Gravity Corrections37
II.2. Basic Principle Of The Magnetic Method41
II.2.a. Time Variation Of Earth's Magnetic Field43
II.2.b. Rock Magnetization44
II.2.c. Aeromagnetic Surveys45
i. Survey Alititude45
ii. Flight Direction47
iii. Line Spacing48
iv. Sampling Interval49
v. Magnetometer Resolution50
vi. Navigation51
II.3. Techniques For Gravity And Magnetic Data Analysis52
II.3.1. Separation Of Local And Regional Effects52
a. Graphical Method53
b. Analytical Method54
i. Griffin's Analytical Method54
ii Polynomial Fitting 57

II.3.2. Second Vertical Derivative Technique61
a. The Relation Between The Second Vertical
Derivative And The Residual64
b. Rosenbach's Method65
II.3.3. Down And Upward Continuation Of Potential
Field Technique69
II.3.4. Two Dimentional Modelling Technique In
Gravity Iterpretation
II.3.5. Inversion Of Gravity Anomaly Data Using
"Ideal Body" Technique
II.3.6. Reduction Of Magnetic Data To The Pole89
II.3.7. Werner Deconvolution Technique In Magnetic
Profiles95
CHAPTER III. GEOGRAPHICAL INFORMATION SYSTEM (GIS) TECHNIQUES
III.1. Fundamental Of GIS101
III.2. Phases Of GIS
III.2.1. Data Acquisition
III.2.2. Data Encoding And Digitization 104
III.2.3. Data Processing
III.2.4. Data Display/Analysis
a. Spatial Analysis 108
b. Statistical Analysis 109
i. Univariate Statistics
ii. Multivariate Statistics 109
III.2.5. Classification
a. Supervised Classification 112
b. Unsupervised Classification 112
CHAPTER IV. QUALITATIVE INTERPRETATION OF GRAVITY AND
MAGNETIC MAPS AND PROFILES
IV.1. Qualitative Interpretation Of Gravity Results 115
IV.1.1. General Features Of Gravity Maps 115
a. Bouguer Gravity Map 115
b. Regional Gravity Map

ā

c. Residual Gravity Map 124	
d. Second Vertical Derivative Gravity Map 126	
e. Downward Continuation Gravity Maps 129	
IV.1.2. Tentative Interpertation Of The NE-SW	
Gravity Profiles	
IV.1.3. Interpretation Of The Two Dimensional	
Modelling In Gravity Profiles 142	
IV.1.4. Interpretation Of "Ideal Body" Results 154	
IV.2 Qualitative Interpretation Of Magnetic Results 177	
IV.2.1. General Features Of Magnetic Maps 177	
a. Aeromagnetic Map	
b. Regional Magnetic Map 179	
c. Residual Magnetic Map 182	
d. Second Vertical Derivative Magnetic Map 184	
e. Down And Upward Continuation Magnetic Map. 186	
f. Reduce The Magnetic Map To Pole 195	
IV.2.2. Results And Interpretation Of Werner	
Deconvolution Technique In Magnetic Profiles 200	
CHAPTER V. QUANTITATIVE INTERPRETATION OF GRAVITY AND	
MAGNETIC MAPS AND PROFILES225	
V.1. Statistical Analysis Method:225	
V.1.1. Spectral Analysis Of The Potential Field	
Profiles Of The Study Area 225	
a. Gravity Profiles 229	
i. Bouguer Gravity Profiles 229	
ii. Regional Gravity Profiles 234	
iii. Residual Gravity Profiles 237	
b. Magnetic Profiles 241	
i. Aeromagnetic Profiles 241	
ii. Regional Magnetic Profiles 245	
iii. Residual Magnetic Profiles 248	
V.1.2. Autocorrelation Analysis:	

V.2.	Statistical Structure Of Gravity And Magnetic Maps	264
	V.2.1. Treatment Of Gravity Maps	266
	a. Bouguer Gravity Map	266
	b. Regional Gravity Map	274
	c. Residual Gravity Map	280
	V.2.2. Treatment Of Magnetic Maps	290
	a. Aeromagnetic Map	290
	b. Regional Magnetic Map	296
	c. Residual Magnetic Map	304
V.3.	Statistical Analysis Using GIS Techniques:	315
	V.3.1. Data Map Image Representation	316
	V.3.2. One-Dimensional Analysis Of Images	324
	a. Analysis Of Gravity Image Histogram	325
	i. Bouguer Gravity Image Histogram	325
	ii. Regional Gravity Image Histogram	325
	iii. Residual Gravity Image Histogram	325
	b. Analysis Of Magnetic Image Histogram	327
	i. Magnetic Image Histogram	327
	ii. Regional Magnetic Histogram	327
	iii. Residual Magnetic Histogram	327
	V.3.3. Image Classification	330
	a. Gravity Image Classification	330
	i. Bouguer Gravity Image Classification	330
	ii. Regional Gravity Image Classification	330
	iii. Residual Gravity Image Classification	332
	b. Magnetic Image Classification	332
	i. Magnetic Image Classification	
	ii. Regional Magnetic Image Classification	
	iii. Residual Magnetic Image Classification	
	V.3.4. Trend Surface Analysis	
	a. Trend Surface Analysis Of Gravity Image	
	b. Trend Surface analysis Of Magnetic Image	340
	V.3.5. Interpretation and Analysis Of Image	
	correlations	342
	a. Scatter Plot	344
	h Pogracian Analysis	216

c. Cross Classification	347
i. Correlation Between Images Of Gravity	
And Magnetic	347
ii. Correlation Between Images Of Regional	
Images Of Gravity And Magnetic	348
iii. Correlation Between Images Of Residual	
Images Of Gravity And Magnetic	350
V.3.6. Application Of GIS Techniques For Analysis Of	
Gravity And Magnetic Maps	354
i. Monovariante Pattern Recognition Technique	354
V.4. Lineament Analysis Of Landsat Image Of	
The Study Area	361
CHAPTER VI. SUMMARY AND CONCLUSION	380
REFERENCES	397
ARABIC SUMMARY	412

CHAPTER I

INTRODUCTION

INTRODUCTION

I.1. AIM OF THE WORK

The Gulf of Suez area is a very important part of Egypt, which includes many exploratory zones. Over the last 20 years, many geological and geophysical investigations have been conducted to determine its origin, and to search for the causative bodies. This work proceeds geophysical studies to obtain the most probable picture of the subsurface structural distribution. Also, to study the forces acting on the Gulf due to tectonic activities for determining the hazard zones and the earthquake regions. Besides many different techniques are used to delineate the hydrocarbon accumulation regions.

Geographic information system (GIS) technique is applied, as a technique of analysis for this work, to study the relationships among results obtained by various geophysical methods, as a trial for establishing the processing techniques of GIS in geophysical interpretations. Such relationships, will clearify the approach to locate the most favorable subsurface geological and structural conditions for hydrocarbon accumulations.

I.2. LOCATION AND GENERAL VIEW ABOUT THE AREA:

The Gulf of Suez lies at the north eastern corner of Egypt between the longitudes 32° 20′ - 33° 45′ E, and latitudes 27° 25′ - 30° 00′ N (Fig. I-1). It is a shallow and narrow water body located between the Eastern Desert and Sinai Peninsula. It extends for about 350 km., from the south tip of Sinai Peninsula to Suez City, with an average width of about 65 km., and an average depth of 50m.

It covers an area of approximately 20,000 sq.kms., from Suez to Hurghada Cities, and takes the direction of clysmic trend, N 10 $^{\circ}$ W - S 10 $^{\circ}$ E .

The area has been under extensive surface geology exploration activities and different geophysical methods and exploratory drilling since 1886 till present. These exploration efforts results in the discovery of 73 oil fields. Seven of them can be classified as large fields namely; Morgan, October, Belayim land, Belayim Marine, July, Ramadan and Ras Gharib fields.

Most of the recoverable reservoires were found in the Miocene sediments, and till now the Gulf of Suez is considered as the main prolific province of oil in Egypt.

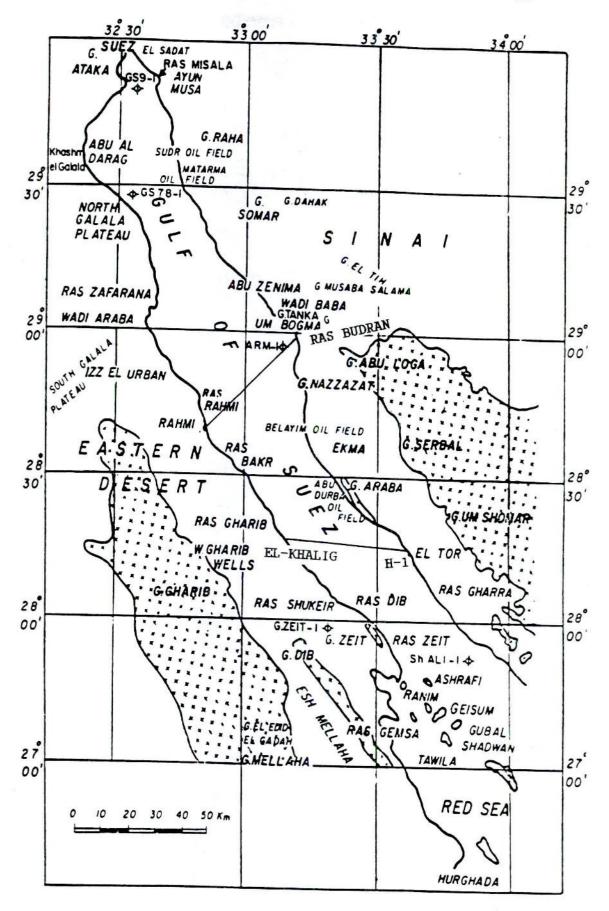


FIG.(I-1): The Location Map Of The Gulf Of Suez (After Zahran; 1986)