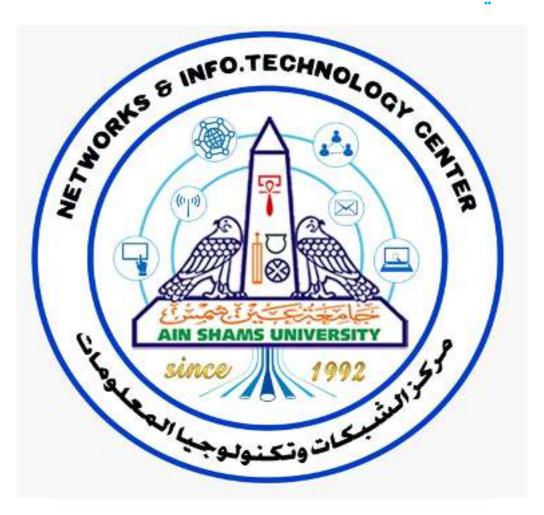


Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني



Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

DEVELOPMENT OF A UNIFIED CONTROL ALGORITHM FOR DEMAND RESPONSE BASED HOME ENERGY MANAGEMENT SYSTM

By

Momen Samy El-Agamy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

Electrical Power and Machines Engineering

in

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

DEVELOPMENT OF A UNIFIED CONTROL ALGORITHM FOR DEMAND RESPONSE BASED HOME ENERGY MANAGEMENT SYSTEM

By

Momen Samy El-Agamy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under Supervision of

Prof. Dr. AHMED BAHGAT

Professor of
Electrical power & Machines Dept.
Faculty of Engineering, Cairo University

Prof. Dr. HASSAN RASHAD

Professor of
Electrical Power & Machines Dept.
Faculty of Engineering, Cairo University

Assoc. Prof. Dr. AHMED BESHEER

Associate Professor Environmental Studies and Research Institute, University of Sadat City, Sadat City, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

DEVELOPMENT OF A UNIFIED CONTROL ALGORITHM FOR DEMAND RESPONSE BASED HOME ENERGY MANAGEMENT SYSTEM

By Momen Samy El-Agamy

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof.Dr. Ahmed Bahgat Gamal Bahgat

(Dr.Professor, Faculty of Engineering, Cairo University)

Prof.Dr. Hassan Mohamed Rashad Emarah

(Dr.Professor, Faculty of Engineering, Cairo University)

Prof.Dr. Mohamed Salah El-Sobky

(Dr.Professor, Faculty of Engineering, Cairo University)

Prof.Dr. Abdel-Ghany Mohamed Abdel-Ghany

External Examiner

(Dr. Professor, Faculty of Engineering [Helwan], Helwan University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Momen Samy El-Agamy

Date of Birth: 11/11/1989
Nationality: Egyptian

Email: Momen.agamy@gmail.com

Phone: +201004439675 Address: Haram/Giza Reg. Date: 1/10/2014

Awarding Date:

Degree: Master of Science

Department Electrical Power and Machines Engineering

Supervisors:

Prof. Dr./Ahmed Bahgat Gamal Bahgat Prof. Dr./ Hassan Mohamed Rashad

Associate Prof. Dr./ Ahmed Hussein Besheer

Examiners:

Prof. Dr.: AbdelGhany Mohamed AbdelGhany (External Examiner)

Faculty of Engineering, Helwan University

Prof. Dr.: Mohamed Salah El-Sobky (Internal Examiner) **Prof. Dr.: Ahmed Bahgat Gamal Bahgat** (Thesis Main Advisor)

Prof. Dr.: Hassan Mohamed Rashad Emarah (Member)

Title of thesis:

DEVELOPMENT OF A UNIFIED CONTROL ALGORITHM FOR DEMAND SIDE BASED HOME ENERGY MANAGEMENT SYSTEM

Key Words:

Smart Grid, Home Energy Management Systems (HEMS), Demand Request Event, Appliances Load Profile, Appliances Scheduling, Load shift.

Summary:

This thesis presents the various control methodologies of home energy management systems (HEMS) in previous literature as part of demand response programs in smart grid systems, this is done by categorizing the HEMS various techniques and clarifying the differences between them. In addition, modeling and simulating each category have been implemented in MATLAB/Simulink environment to evaluate each algorithm based on a suggested residential load profile. A new unified control algorithm is proposed and adopted to show its advantages over the preceding types of HEMS algorithms. Appliances load models have been developed using the MATLAB/Simulink environment that will assist in evaluating each algorithm and comparing their results.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited

them in the references section.

Name:	Date:
Signature:	

ACKNOWLEDGEMENTS

First of all, thanks for Allah for giving me the strength and persistence to finish my studies for the master of science degree.

I would like to express my gratitude and deep appreciation to my supervisor **Prof. Dr. Ahmed Bahgat** for his personal and technical support and helpful guidance trough my years of study and through the process of researching and writing this thesis.

Special thanks to **Prof. Dr. Hassan Rashad** for her helpful advices and for providing me with useful tips throughout the research work.

Furthermore, I would like to thank **Prof. Ahmed Besheer** for introducing me to the topic as well for the support on the way, for useful comments, remarks and engagement through the learning process of this master thesis. The door to him was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this thesis and paper to be my first academic remarkable work, but steered me in the right the direction whenever he thought I needed it.

I must express my gratitude to my family for their encouragement to me through my studies and my life.

I must express my very profound gratitude to my brother and my superior in Schneider Electric Egypt **Eng. Sameeh Ahmad El-Naqr** for providing me with unfailing support, and for helping me get through the difficult times. He was more than a friend and a brother without whom this accomplishment would not have been possible.

Finally, it is difficult to overstate my gratitude to my friend and brother **Eng. Ahmed Naguib El-Sheikh**, he is and was always my role model who have taught me a lot in my professional and my personal life, and for being a valued person in my life.

Thank you.

TABLE OF CONTENS

Disclain	ner	i
ACKNO	OWLEDGEMENTS	ا
TABLE	OF CONTENS	111
LIST O	F TABLES	V
LIST O	F FIGURES	VI
Nomeno	clature	VIII
ABSTR	ACT	IX
Chapter	1: Introduction	1
1.1	Overview	1
1.2	Smart Grid and Demand Side Management	2
1.3	Demand response objectives	2
1.4	Home Energy Management System	4
1.5	Thesis Objectives	8
1.6	Thesis Assumptions	8
1.7	Thesis Organization	8
Chapter	2 : Literature Survey	9
2.1	Introduction	9
2.2	Load Power Curtailment based HEMS Algorithms	10
2.3	Load Power Control based HEMS Algorithms	11
2.4	Load Power Time Shifting Loads HEMS Algorithms	12
2.5	Conclusion	13
Chapter	3: HEMS System Description	15
3.1	Introduction	15
3.2	Home Appliances Modeling	15
3.2.1	Water Heater Load Modeling	18
3.2.2	Air Conditioning Load Modeling	22
3.2.3	Clothes Dryer Load	28
3.2.4	Electric Vehicle Load	29
3.2.5	Total aggregated load profile	30

3.3	Demand Response (DR) Event	31
3.4	Algorithms' Concepts of HEMS	31
3.4.	1 Load Power Curtailment based HEMS Algorithms	31
3.4.2	2 Load Power Control based HEMS Algorithms	34
3.4.3	3 Load Power Shifting HEMS Algorithms	37
3.4.	4 Unified Control HEMS Algorithms	39
Chapte	er 4 : Simulation Results	42
4.1	Introduction	42
4.2	Implementing Load Power Curtailment Algorithm	42
4.3	Implementing Load Power Control Algorithm	45
4.4	Implementing Load Power shifting Algorithm	47
4.5	Implementing the Unified Control Algorithm	49
4.6	Results and Discussion	52
Chapte	er 5 : Conclusion and Future Work	55
5.1	Conclusion	55
5.2	Recommendations for Future Work	56
Refere	ences	57
Appen	ndices	60
App	endix A: HEMS Algorithms Simulink model	60
App	endix B: MATLAB Codes	64
App	endix C: Load Profile for CD and EV [40]	81
App	endix D: Water Usage Profile [40]	83
App	endix E: Outdoor Temperature [40]	85
App	endix F: Solar Radiation data [40]	87
Арр	endix G: Electricity Users in Egyptian Market	89
Арр	endix H: Egypt Electricity consumption data	90
Арр	endix I: Egyptian Tariffs	91

LIST OF TABLES

Table 2-1: Typical load profile for critical appliances in the household	14
Table 3-1: Non-Critical Appliances rated power and its priority	16
Table 3-2: Typical load profile for critical appliances in the household	17
Table 3-3: Parameters for Water Heater load model	20
Table 3-4: Parameters for AC load model	26
Table 4-1: HEMS Algorithms Comparison	53
Table 4-2: Energy Cost Indices	54
Table 0-1: AC Simulink load model I/Os	61
Table 0-2: WH Simulink load model I/Os	62
Table 0-3: HEMS Algorithm Simulink load model I/Os	63

LIST OF FIGURES

Figure 1-1: Advanced HEMS schedule the operation of appliances within the home in response to	
consumer preferences and price, weather, and distributed energy generation forecasts	7
Figure 2-1: Classification of HEMS	9
Figure 2-2: HEM algorithm flow chart HEM decision-making process, assuming the load priority is	
WH>AC>CD>EV [29]	10
Figure 2-3: Smart home energy management Algorithm [36]	12
Figure 2-4: Power and control and data flow between users and the electricity utility [37]	13
Figure 3-1: Water Heater Load Model	
Figure 3-2: WH power cycle versus water temperature and set-point	21
Figure 3-3: Air Conditioning Load Model	22
Figure 3-4: Thermostat set-point and temperature in the AC unit	23
Figure 3-5: AC power cycle versus room temperature and set-point	27
Figure 3-6: CD Load power cycle	28
Figure 3-7: EV load power cycle	29
Figure 3-8: Total aggregated load profile for the residential building	30
Figure 3-9: Load Power curtailment flow chart, load priority from #1 to #4 as WH > AC > CD > EV	32
Figure 3-10: Simulink model of the load power curtailment algorithm (Illustrated in Appendix A)	33
Figure 3-11: HEMS load power control flow chart	35
Figure 3-12: Simulink model of the load power control algorithm (Illustrated in Appendix A)	36
Figure 3-13: HEMS load power shifting flow chart	37
Figure 3-14: Simulink model of the load power shifting algorithm (Illustrated in Appendix A)	
Figure 3-15: Unified Control HEMS algorithm flow chart	40
Figure 3-16: Simulink model of the unified control algorithm (Illustrated in Appendix A)	41
Figure 4-1: Home Load profile before implementing the load power curtailment HEMS	43
Figure 4-2: Home Load profile before and after implementing the load power curtailment HEMS	44
Figure 4-3: Home Load profile after implementing the load power curtailment HEMS	44
Figure 4-4: Home Load profile before implementing the load power control HEMS	45
Figure 4-5: Home Load profile after implementing the load power control HEMS	46
Figure 4-6: Home Load profile before and after implementing the load power control HEMS	46
Figure 4-7: Home Load profile before implementing the load power shifting HEMS	47
Figure 4-8: Home Load profile after implementing the load power shifting HEMS	48
Figure 4-9: Home Load profile before and after implementing the load power shifting HEMS	49
Figure 4-10: Home Load profile before implementing the unified HEMS Algorithm	50
Figure 4-11: Home Load profile after implementing the unified HEMS Algorithm	51
Figure 4-12: Home Load profile before and after implementing the unified HEMS Algorithm	
Figure 4-13: Room Temperature Comparison	
Figure 4-14: Energy Consumption Indices	54
Figure 0-1: Overall Simulink model for the HEMS Algorithm	60

Figure 0-2: Simulink model for the AC load profile	.61
Figure 0-3: Simulink model for the WH load profile	.62
Figure 0-4: Simulink model for the HEMS Algorithm	.63

Nomenclature

HEMS: Home Energy Management System

DR: Demand Response

WH: Water Heater

AC: Air Conditioning

CD: Clothes Dryer

EV: Electric Vehicle

ABSTRACT

The recent energy efficiency and conservation programs has created an unprecedented demand for home energy management systems (HEMS) in residential sector to reduce electricity consumption and hence conserve electric bills.

In this thesis, a proposed unified control algorithm is presented that targets to manage the home appliances' hourly power operation in a daily basis. The proposed algorithm is generic in the sense of getting the ability to achieve three different objectives for the electricity generation and distribution utility/customer dual benefits. Range of constraints such as load priority, customer preferences, demand response limit signal (utility request) and utility tariffs' pricing are taken into consideration. The ultimate goal of this algorithm is not only to curtail or control the appliance load power but also to shift it to better pricing period based on different tariff rates. The results reflect the effectiveness of the proposed algorithm that extends the previous results in literature by considering wider range of limitations applied on HEMS simultaneously.

In this context, firstly the main objectives of the demand response principle and its role in the energy conservation procedures are discussed as a one of the major mechanisms in the demand side management approach. Then, the general definition, goals and methodologies of HEMS are given. Moreover, the technical strategies developed and different algorithms in the literature are also presented.

The development of the load profile used in this thesis is presented to test the effects of each algorithm, the results of each algorithm is discussed showing their drawbacks. The proposed unified control algorithm is then implemented on the same load profile to show the difference and its paybacks over the traditional algorithms. Test results are presented and discussed with the help of illustrative figures and curves.