

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

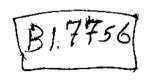
يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل


بسيم الله الرحمن الرحيم

•

A STUDY OF THE EXTENDED-SPECTRUM β-LACTAMASES PRODUCED BY ENTEROBACTERIACEAE VERSUS DIFFERENT CEPHALOSPORINS

A Thosis Presented By

Nelly Mostafa Abdel-Moneim Mohamed

B. Pharm. Sci., University of Alexandria (1996)
 M. Pharm. Sci. (Pharm. Microbiol.)
 University of Alexandria (2000)

For the Degree of

DOCTOR OF PHILOSOPHY

In

Pharmaceutical Sciences (Pharmaceutical Microbiology)

Under the Supervision of

Prof. Dr. Mansour E. Aggag

Professor of Pharmaceutical Microbiology Faculty of Pharmacy Prof. Dr. Mohamed A. Fawzi

Professor and head of Pharmaceutical Microbiology Department Faculty of Pharmacy

Dr. Nadia M. El-Guink

Lecturer of Pharmaceutical Microbiology Faculty of Pharmacy

Or. Hesham M. Saeed

Lecturer of Biochemistry
Institute of Graduate Studies and
Research

Department of Pharmaceutical Microbiology
Faculty of Pharmacy
University of Alexandria
Egypt

2004

Approved by

Committee in charge						
	.		•••••		••••••	
			• • • • • • • • • • • • • • • • • • • •		·····	
				•••••		

ACKNOWLEDGEMENTS

I would like to seize the opportunity to extend my deepest gratitude and warmest regards to *Prof. Dr. Mansour E. Aggag*, Professor of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alexandria, for his instructive advice, his fruitful discussions, his guiding amendments and endless support. I owe him great appreciation for what I have learned and what I have achieved.

I would like to express my infinite appreciation and profound thanks to *Prof.*Dr. Mohamed A. Fawzy, Professor of Pharmaceutical Microbiology,
Faculty of Pharmacy, University of Alexandria, for his constructive ideas,
devotion in solving many of the problems encountered throughout the course
of this study and sincerity in giving me vital guidance and supervision during
the entire work.

I am greatly indebted to *Dr. Nadia M. El-Guink*, Lecturer of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alexandria. I would like to express my deepest thanks for her cooperation, valuable suggestions, sincere encouragement and indispensable help in revising the manuscript.

I feel greatly thankful to *Dr. Hesham M. Saeed*, Lecturer of Biochemistry and Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, for his generous help, patience, keen interest, valuable effort and advice in the molecular biology part of this thesis.

I would like to thank my colleagues, secretarial staff, technicians and workers of the Microbiology Department for provided assistance and generous help.

Finally, I would like to acknowledge a warm debt of gratitude to my dearest parents and my husband whose cordial encouragement and loving support were of great value in accomplishing this thesis.

Nelly M. Abdel-Moneim

LIST OF ABBREVIATIONS

Abbr.	Name	Abbr.	Name ;
AK	Amikacin	Ent ₁ ,Ent ₂	Enterobacter cloacae
AMP	Ampicillin	K_1 - K_{41}	Klebsiella pneumoniae
AMC	Amoxicillin/clavulanate	$\mathbf{Pr_1}$	Proteus mirabilis
ATM	Aztreonam	Ps_1-Ps_8	Pseudomonas aeruginosa
CAZ	Ceftazidime	API	Analytical Profile Index
CFP	Cefoperazone	BLAST	Basic Local Alignment Search Tool
CIP	Ciprofloxacin	bla_{SHV}	β-lactamase SHV gene
Clav	Potassium clavulanate	bla_{TEM}	β-lactamase TEM gene
CN	Gentamicin	bp	base pair
CPD	Cefpodoxime	CFU	Colony Forming Unit
CPO	Cefpirome	ESBLs	Extended-Spectrum
			β-Lactamases
CRO	Ceftriaxone	Etest	Epsilometer test
CTX	Cefotaxime	GFX	Glass Fiber Matrix
CXM	Cefuroxime	IC_{50}	50% Inhibitory Concentration
FEP	Cefepime	ICU	Intensive Care Unit
IPM	Imipenem	Kbp	Kilobase pair
KF	Cephalothin	\mathbf{K}_{m}	Michaelis constant
NA .	Nalidixic acid	MIC	Minimum Inhibitory Concentration
OFX	Ofloxacin	PBPs	Penicillin Binding Proteins
PRL	Piperacillin	PCR	Polymerase Chain Reaction
S	Streptomycin	pI	Isoelectric point
SAM	Ampicillin/sulbactam	RFLP	Restriction Fragment Length
			Polymorphism
SXT	Co-trimoxazole	SDS	Sodium Dodecyl Sulphate
TE	Tetracycline	TAE	Agarose gel electrophoresis buffer (Tris-Acetate-Edetate)
TOB	Tobramycin	TE	Tris-EDTA buffer
C_1, C_2	Citrobacter freundii	UV	Ultraviolet radiations
$\mathbf{E_{1}}$ - $\mathbf{E_{21}}$	Escherichia coli	\mathbf{V}_{max}	Maximum velocity

CONTENTS

СНА	PTER	PAGE
I.	INTRODUCTION	1
II.	AIM OF THE WORK	54
III.	MATERIALS AND METHODS	55
	- Materials	55
	- Methods	65
IV.	RESULTS	90
V.	DISCUSSION	229
VI.	SUMMARY AND CONCLUSION	252
VII.	REFERENCES	258
	APPENDIX	
	ARARIC SUMMADV	

LIST OF TABLES

Table		Page
(1)	Frequency of the 75 isolates.	91
(2)	Types and number of the isolated organisms from different clinical specimens.	92
(3)	Biochemical tests used for the identification of the tested isolates.	94
(4)	Results of the API 20E identification for selected isolates	98
(5)	Interpretation of the API 20E results using the API index.	99
(6)	Antibiotic resistance of the tested isolates.	101
(7)	The percentage of tested isolates susceptible to different cephalosporin generations.	103
(8)	Multiple resistance pattern of the tested isolates to different cephalosporin generations.	105
(9)	β -lactam/ β -lactam co-resistance against the tested isolates	106
(10)	β -lactam/non- β -lactam co-resistance against the tested isolates	107
(11)	MIC range, MIC_{50} and MIC_{90} of different antibiotics against the tested isolates.	111
(12)	Minimum inhibitory concentrations of different antibiotics against 75 clinical isolates.	113
(13)	β-lactamase production by the iodometric method for the isolated <i>Enterobacteriaceae</i> and <i>Ps. aeruginosa</i> .	115

Table		Page
(14)	Inhibition zone diameters for possible ESBL- producing isolates using the Kirby-Bauer disc- diffusion method.	117
(15)	Effect of potassium clavulanate on the MIC of cefotaxime and ceftazidime against possible ESBL-producing isolates.	118
(16)	Inhibition zone diameters and zone augmentation for the detection of ESBL-producing isolates using the inhibitor-potentiated disc-diffusion test.	122
(17)	Detection of ESBL production using Etest ESBL strips.	125
(18)	Plasmid profiles of the ESBL-producing isolates.	129
(19)	Conjugation frequency and plasmid profile for the obtained transconjugants.	132
(20)	Antibiotic susceptibility of the recipient <i>E. coli</i> K-12 UB5202, donors: K ₂₄ , K ₂₆ , K ₄₁ and their corresponding transconjugants.	133
(21)	Transformation rate and plasmid profile for the obtained transformants.	135
(22)	Antibiotic resistance pattern of the ESBL-producing isolates and their corresponding transformants.	137
(23)	Minimum inhibitory concentration (MIC) of the ESBL-producing isolates, their corresponding transconjugants and transformants.	139
(24)	Substrate profile of the ESBL produced by K_{11} isolate.	143
(25)	Substrate profile of the ESBL produced by K ₂₆ isolate.	143

Table		Page
(26)	Substrate profile of the ESBL produced by K_{29} isolate.	144
(27)	Substrate profile of the ESBL produced by E ₉ isolate.	144
(28)	Substrate profile of the ESBL produced by E_{10} isolate.	145
(29)	Relative specific activity of the ESBLs with reference to cephaloridine.	147
(30)	Effect of different cephaloridine concentrations on the activity of the ESBLs produced by the tested isolates.	148
(31)	Effect of different cefuroxime concentrations on the activity of the ESBLs produced by the tested isolates.	149
(32)	Effect of different cefotaxime concentrations on the activity of the ESBLs produced by the tested isolates.	150
(33)	Effect of different ceftazidime concentrations on the activity of the ESBLs produced by the tested isolates.	151
(34)	Effect of different cefepime concentrations on the activity of the ESBLs produced by the tested isolates.	152
(35)	Kinetic parameters of the ESBLs against different cephalosporin generations.	159
(36)	Relative kinetic parameters of the tested ESBLs with respect to cephaloridine.	161