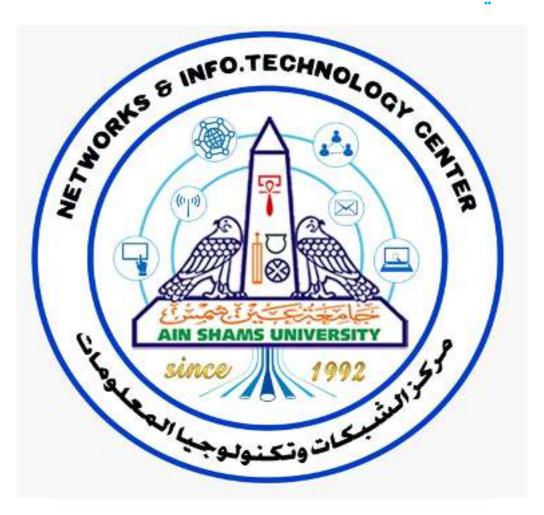


Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني



Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

EFFECT OF DRILLING FLUID TEMPERATURE ON FORMATION FRACTURE PRESSURE GRADIENT

By

Ahmed Mostafa Mokbel Ahmed Samak

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

EFFECT OF DRILLING FLUID TEMPERATURE ON FORMATION FRACTURE PRESSURE GRADIENT

By

Ahmed Mostafa Mokbel Ahmed Samak

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Under the Supervision of

Prof. Dr. Abdel-Alim Hashem El-Sayed

Professor of Petroleum Engineering Department of Mining, Petroleum and Metallurgy Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

EFFECT OF DRILLING FLUID TEMPERATURE ON FORMATION FRACTURE PRESSURE GRADIENT

By

Ahmed Mostafa Mokbel Ahmed Samak

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Petroleum Engineering**

Approved by the Examining Committee	
Prof. Dr. Abdel-Alim Hashem El-Sayed,	Thesis Main Advisor
Faculty of Engineering, Cairo University	
Prof. Dr. Fouad Khalaf Mohamed,	Internal Examiner
Faculty of Engineering, Cairo University	
Prof. Dr. Mohamed Mahmoud El-Assal,	External Examiner
CEO of Triple L Oil Services	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Ahmed Mostafa Mokbel Ahmed Samak

Date of Birth: 01/11/1990 Nationality: Egyptian

E-mail: ahmed.mostafa.samak@gmail.com

Phone: +201068600981

Address: 15 Samak St, Abu-Kabeer, Sharkia.

Registration date: 01/10/2012 Awarding Date: //2019

Degree: Master of Science
Department: Petroleum Engineering

Supervisors: Prof. Dr. Abdel-Alim Hashem El-Sayed.

Examiners:

Prof. Dr. Abdel-Alim Hashem El-Sayed.

Prof. Dr. Fouad Khalaf Mohamed.

Prof. Dr. Mohamed Mahmoud El-Assal.

CEO of Triple L Oil Services

Title of Thesis:

Effect of Drilling Fluid Temperature on Formation Fracture Pressure Gradient.

Key Words:

Temperature Distribution, Thermal Effect, Wellbore Stability, Fracture Gradient.

Summary:

In this thesis, in order to predict the formation fracture gradient in high-temperature formations, a simulation model of the temperature field around the borehole during circulation is established. The effect of temperature change on the formation fracture pressure gradient around the borehole is analyzed and simulated. This effect will be important for HPHT and deep-water wells to reduce the possibility of losses, predict the apparent kick and then save rig time.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Mostafa Mokbel Ahmed Samak Date: 8/4/2019

Signature:

DEDICATION

I feel that no one worth this dedication but my parents.

ACKNOWLEDGEMENT

I thank Allah the Almighty for giving me the power and patience to complete this research. I would also like to thank my parents for encouraging and supporting me throughout my life and especially during working on my research. I want to express my great appreciation to Dr. Abdel-Alim Hashem for his valuable and constructive suggestions during this research work.

TABLE OF CONTENTS

DISCLA	AIMER	I
DEDIC	ATION	II
ACKNO	DWLEDGEMENT	III
TABLE	OF CONTENTS	IV
LIST O	F TABLES	VII
LIST O	F FIGURES	VIII
NOME	NCLATURES	IX
ABSTR	ACT	XII
CHAPT	ER 1: INTRODUCTION	1
1.1.	Downhole Circulating Temperature (DHCT)	1
1.2.	Effect of DHCT on Fracture Gradient	3
1.3.	Statement of the Problem	4
1.4.	Research Objectives	5
1.5.	Thesis Structure	5
CHAPT	ER 2: LITERATURE REVIEW	7
2.1.	DHCT Overview	7
2.2.	Effect of DHCT on WBS and FG Overview	8
2.3.	Field Work Explanation of DHCT Effect on FG	10
	TER 3: EFFECT OF DOWNHOLE CIRCULATING TEMPERATURE ON	
	URE GRADIENT CALCULATIONS	
3.1.	Downhole Circulation Temperature Calculation Methods	
3.1		
_	3.1.1.1. Analytical solution	
3	3.1.1.2. Numerical solution	
	3.1.1.2.1. Explicit method:	
	3.1.1.2.1.1. Heat transfer in drill-pipe	
	3.1.1.2.1.2. Heat transfer in annulus	
	3.1.1.2.2. Implicit method	
	3.1.1.2.2.1. Heat transfer in drill-pipe	
	3.1.1.2.2.2. Heat transfer in annulus	20
	3 1 1 2 2 3 Wellhore temperature	21

3	3.1.1.3.	Heat transfer coefficient (h) calculations	22
	3.1.1.3	3.1. Calculating (h) in drill-pipe	23
	3.1.1.3	3.2. Calculating (h) in annulus	24
3	3.1.1.4.	Overall heat transfer coefficient	24
	3.1.1.4	I.1. Overall heat transfer coefficient of drill-pipe	25
	3.1.1.4	1.2. Overall heat transfer coefficient for casing and cement layers	26
3.1	.2. E	ffect of pressure losses on DHCT	27
3	3.1.2.1.	Pressure drop through drill-pipe	27
3	3.1.2.2.	Pressure drop through annulus	28
3.2.	Fracti	re Pressure Gradient Calculation Methods	29
3.2	1. Ir	n-situ stresses	29
3	3.2.1.1.	Overburden stress	29
3	3.2.1.2.	Horizontal stresses	30
3.2	2. F	ormation pore pressure	30
3.2	3. E	ffective stresses	31
3.2	.4. F	racture pressure gradient concept and calculations	32
3	3.2.4.1.	Direct method	33
3	3.2.4.2.	Indirect methods	34
	3.2.4.2	2.1. Hubbert & Willis	34
	3.2.4.2	2.2. Matthews & Kelly	34
	3.2.4.2	2.3. Ben Eaton	35
3.3.	Effect	of DHCT on FG	36
3.3	.1. T	hermal effect on overburden stress	36
3.3	.2. T	hermal effect on pore pressure	37
CHAPT		RESEARCH METHODOLOGY AND PROGRAM DESCRIPTION	
4.1.	Form	ulation Methodology	39
4.2.	J	am Description	
CHAPT		PROGRAM RESULTS, VERIFICATION AND DISCUSSION	
5.1.	O	am Results and Discussion	
5.2.	-	aring DHCT Program Results	
5.2		ommercial program introduction	
5.2		omparing the results	
53	Coco	Study and Program FC Results	63

	Actual well losses data	
5.3.2.	Data analysis and program results	64
CHAPTER	6: CONCLUSIONS AND RECOMMENDATIONS	67
REFEREN	CES	69
APPENDIX	(A	73

LIST OF TABLES

Table. 3.1: Test results for the thermal expansion coefficients of different rocks	37
Table. 5.1: Well drilling fluid properties.	49
Table. 5.2: Well formation properties	
Table. 5.3: Well drill-pipe properties	49
Table. 5.4: Well casing sizes and setting depths	

LIST OF FIGURES

Figure 1.1: Downhole circulating temperature (DHCT) distribution	2
Figure 2.1: Effect of temperature change on leak-off tests results	13
Figure 3.1: Discretization for heat transfer in drill-pipe.	17
Figure 3.2: Discretization for heat transfer in annulus	18
Figure 3.3: Grid of points in annulus & drill-pipe.	21
Figure 3.4: Overall heat transfer through a wall	25
Figure 3.5: Overall heat transfer through several walls.	25
Figure 3.6: Different casing and cement layers in a wellbore	26
Figure 3.7: In-situ stresses in the formation	30
Figure 3.8: Normal formation pressure	31
Figure 3.9: Sub-normal and abnormal formation pressure.	31
Figure 3.10: Relation between S_v and pore pressure	32
Figure 3.11: Matrix stress coefficient (k _i) for different formations	
Figure 3.12: Formation break-down curve.	33
Figure 3.13: Matrix stress coefficient of Matthews & Kelly	35
Figure 4.1: Home sheet	40
Figure 4.2: Introduction sheet.	41
Figure 4.3: Instruction sheet.	42
Figure 4.4: Nomenclature sheet	43
Figure 4.5: Input Data sheet.	43
Figure 4.6: DHCT output sheet in the program.	44
Figure 4.7: FG Change output sheet in the program	45
Figure 4.8: Specific heat capacity for drilling fluids.	46
Figure 4.9: Thermal conductivity for drilling fluids.	47
Figure 5.1: Wellbore sketch	50
Figure 5.2: Effect of circulation rate on DHCT	51
Figure 5.3: Effect of circulating time on DHCT.	52
Figure 5.4: Effect of mud weight on DHCT.	53
Figure 5.5: Effect of mud inlet temperature on DHCT	54
Figure 5.6: Effect of kp on DHCT	
Figure 5.7: Thermal effect on fracture gradient	56
Figure 5.8: Effect of circulation rate on DHCT predicted by commercial program	58
Figure 5.9: Effect of circulating time on DHCT predicted by commercial program	59
Figure 5.10: Effect of mud weight on DHCT predicted by commercial program	60
Figure 5.11: Effect of mud inlet temp. on DHCT predicted by commercial program	61
Figure 5.12: Effect of kp on DHCT predicted by commercial program	62
Figure 5.13: Thermal effect on fracture gradient after stress cage	
Figure A.1: Diagram of a wellbore section of dx length	73

NOMENCLATURES

A_a : Cross-sectional area of inside of the annulus, ft².

A_p : Cross-sectional area of inside of the drill-pipe, ft².

APL: Annular pressure loss, psi.

B : Skempton's pore pressure coefficient.

BG : Background gas.
BPH : Barrel per hour.

C_f : Specific heat of formation, BTU/(lb.°F).

C_m : Specific heat of drilling fluid, BTU/(lb.°F).

CHTC : Convective heat transfer coefficients.

D : Diameter, in.

DHCT : Downhole circulating temperature.

DPL : Drill-pipe pressure loss, psi.

d_e : Equivalent diameter of a flow channel, in.

d_h : Hole diameter, in.

d_{pi} : Drill-pipe inside diameter, in.
 d_{po} : Drill-pipe outside diameter, in.

E : Young's Modulus.

EMW : Equivalent mud weight.ERD : Extended reach drilling.FG : Fracture gradient, (PPG).

G : Shear modulus, psi.gpm : Gallon per minute.H : Well depth TVD, ft.

 H_{m} : Well measured depth, ft.

HPHT : High pressure high temperature.

h_a : Coefficient of heat transfer of fluid in annulus, BTU/day.ft²-°F.
 h_p : Coefficient of heat transfer of fluid in drill-pipe, BTU/day.ft²-°F.

k : Consistency index.

 $k_p \hspace{1cm} : \hspace{1cm} Thermal \hspace{0.1cm} conductivity \hspace{0.1cm} of \hspace{0.1cm} drill\text{-pipe}, \hspace{0.1cm} BTU/ft.^oF.hr.$

k_f : Thermal conductivity of formation, BTU/ft.°F.hr.