

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم


قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

ALEXANDRIA UNIVERSITY FACULTY OF ENGINEERING

SECURITY IN SPEECH COMMUNICATION SYSTEMS

A THESIS SUBMITTED TO:

ELECTRICAL ENGINEERING DEPARTMENT

FACULTY OF ENGINEERING

UNIVERSITY OF ALEXANDRIA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

BY

Eng. NOHA OTHMAN KORANY

SUPERVISION

Prof. Dr. ONSY A. ABDEL ALIM

Prof. Dr. EL-SAYED A. YOUSSEF

ELECTRICAL DEPARTMENT

ELECTRICAL DEPARTMENT

FACULTY OF ENGINEERING

FACULTY OF ENGINEERING

ALEXANDRIA UNIVERSITY

ALEXANDRIA UNIVERSITY

ALEXANDRIA, DECEMBER 1994

We certify that we have read this thesis and in our opinion it is fully adequate in scope and quality, as a dissertation for the degree of Master of science.

Exam Committee:

- 1 Prof. Dr. EL-SAYED ABDEL HADI TALKHAN
 Department of Electrical Engineering
 Faculty of Engineering Cairo university
- 2 Prof. Dr. MOHAMED AHMED EZZ-EL-ARAB

 Department of Electrical Engineering

 Faculty of Engineering Alexandria university

E. L. Malle

- 3 Prof. Dr. ONSY AHMED ABDEL ALIM
 Department of Electrical Engineering
 Faculty of Engineering Alexandria university
- 4 Prof. Dr. EL-SAYED AHMED YOUSSEF
 Department of Electrical Engineering
 Faculty of Engineering Alexandria university

For the faculty council Prof. Dr. ADEL LOUTFY MOHAMEDEN Vice dean for graduate studies & research Faculty of Engineering Alexandria university

AKNOWLEDGMENT

After thanking God for having terminated this work, I wish to offer my deepest thanks to Prof. Dr. Onsy Abdel Alim for his true guidance, continuous encouragment and valuable support.

I would like to thank Prof. Dr. El-Sayed Youssef for his sincere advice and helpful comments .

Finally, thanks for everyone having participated in editing this work.

ABSTRACT

In recent years there has been an increased interest in cryptographic techniques due to publicity and the impact of recent technological advances such as LSI/VLSI, microprocessors and programmable signal processor chips.

In this thesis we are interested in security of voice communication. A new technique in speech encryption is proposed. This technique is based on masking the amplitudes and the locations of the vocal tract speech parameters that are estimated according to an assumed model. Two different algorithms are proposed. This technique is applied on the cepstrum as well as on the LPC coefficients.

Real speech is used to test and evaluate the performance of the proposed secure system .

CONTENTS

Abbreviations
List of symbols
Summary

Спа	pter	one:	Introduction	
	1.1	The s	peech signal	1
	1.2	Deve	lopments in speech communication systems	1
	1.3	Why	encryption?	2
	1.4	Linea	r and non linear prediction	4
	1.5	Purpo	se of the thesis	5
Cha	pter	two:	Analysis and coding of speech signals	
	2.1	Introduction		
	2.2	Short time speech analysis		6
		2.2.1	Windowing	6
•		2.2.2	Spectra of windows	9
2.3		Speech analysis techniques		
		2.3.1	Time domain analysis	11
			2.3.1.1 Average zero crossing rate	11
			2.3.1.2 Short time average energy and magnitude	13
			2.3.1.3 Short time autocorrelation function	13
		2.3.2	Frequency domain parameters	16
			2.3.2.1 Filter bank analysis	16
			2.3.2.2 Short time fourier analysis	19

2.4	Codin	ng techniques	19
	2.4.1	Pulse Code Modulation	22
	2.4.2	Adaptive Pulse Code Modulation	25
	2.4.3	Differential Pulse Code Modulation	25
	2.4.4	Adaptive Differential Pulse Code Modulation	26
	2.4.5	Delta Modulation	27
	2.4.6	Subband coders	27
	2.4.7	Vector Quantization Coders	27
	2.4.8	Vocoders	28
2.5	Sumn	nary	28
	`		
Chapter	· three	: Different methods of secure speech communication	
3.1	Introduction		
3.2	Analo	g scramblers	29
	3.2.1	Speech encryption based on scrambling	
		in time domain	30
	3.2.2	Speech encryption based on scrambling	
		in frequency domain	31
3.3	Digita	l scramblers	32
	3.3.1	Block ciphers	32
	3.3.2	Stream ciphers	35
	3.3.3	Non linear stream cipher systems	36
	3.3.4	Cipher feedback	38
٠	3.3.5	Voice security based on DES	38
	3.3.6	Public key ciphers	44
	3.3.7	Use of Code Division Multiple Access	
		in speech security	46

ولميدلا

3.4 Summary

Ch:	apter	four :	Cepstral analysis and Homomorphic deconvolution	of
			speech signals	.
	4.1	Introd		47
	4.2	Homomorphic systems for convolution - deconvolution		
	4.3			
		4.3.1	The speech model	50
		4.3.2	Complex cepstrum computation	51
			Estimation of the speech parameters	53
			4.3.3.1 The vocal tract parameters estimation	58
			4.3.3.2 Excitation modeling	61
			4.3.3.3 Pitch estimation	61
	4.4	Cepstr	ral vocoder	61
	4.5	-		63
	4.6	Transr	mission techniques and bit rate calculation	65
	4.7	Summ		71
Cha	ıpter	five : l	Linear predictive coding	
	5.1	Introdi		72
	5.2	Basic 1	principles of linear predictive analysis	73
	5.3	The au	itocorrelation method	78
	5.4	The ga	in model computation	80
	5.5	Solutio	on of LPC equations using Durbin's recursive solution	82
	5.6	The pr	rediction error signal	83
	5.7	LPC v	ocoder	88
	5.8	Multip	oulse excited LPC vocoder	88

5.9	Transmission details for the multipulse excited LPC vocoder	98
5.	Summary	98
Chapte	six: Proposed method for speech encryption	
6.	Introduction	99
6.2	Proposed technique for speech encryption	99
	6.2.1 Simple scrambling algorithm	100
	6.2.2 First encryption algorithm	101
	6.2.3 Second encryption algorithm	102
6.3	Application of the proposed algorithms on the cepstral	
	coefficients	102
6.4	Application of the second encryption algorithm on the LPC	
	coefficients	107
6.5	Proposed system additional requirements	110
6.6	Methods for evaluating the performance of the	
	proposed secure system	110
	6.6.1 Time waveform and spectrum examinations	110
	6.6.2 Subjective tests	110
	6.6.3 Objective measures	111
	6.6.3.1 Mean squared error	111
	6.6.3.2 Correlation measure	111
6.7	Summary	112
Chapte	seven: Results and discussions	
7.1	Introduction	113
7.2	Waveform and spectrum examinations	114
73	Objective tests	142

7.4	7.4 Subjective tests		
7.5	General discussions	150	
Chapter eight: Conclusions and recommendations		152	
Appendix A : Software programs			

Appendix B: Waveforms and spectra of some tested words

ABBREVIATIONS

A / D Analog to digital conversion

ADM Adaptive delta modulation

ADPCM Adaptive Differential pulse code modulation

APCM Adaptive pulse code modulation

CDMA Code division multiple access

CM Correlation measure

DES Data encryption standard

DFT Discrete fourier transform

DM Delta modulation

DPCM Differential pulse code modulation

FFT Fast fourier transform

FIPS Federal information processing standard

IFFT Inverse fast fourier transform

IV Initial vector

LFSR Linear feedback shift register

LPC Linear predictive coding

LPF Low pass filter

MSE Mean squared error

PCM Pulse code modulation

PSK Phase shift keying

RKG Running key generator

RSA Rivest, Shamir and Adleman

SBB Standard building block

SBC Subband coder